Skip to main content
Log in

Evaluation of particulate organic carbon from MODIS-Aqua in a marine-coastal water body

  • Environmental Issues for the Planet: Solutions from Science and Technology
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

La Paz Bay (LPB) in Mexico is one of the largest marine-coastal bodies of water in the Gulf of California (GC) and is ecologically important for the feeding, reproduction, and refuge of marine species. Although particulate organic carbon (POC) is an important reservoir of oceanic carbon and an indicator of productivity in the euphotic zone, studies in this region are scarce. This study evaluates the performance of satellite-derived POC in LPB from January 2003 to December 2020. The metrics obtained for COP (\({\text{RMSE}}=33.8 {\mathrm{ mg m}}^{-3}\); \({P}_{bias}=29.6\%\) y\({r}_{P}=0.4\mathrm{ con} p<0.05\)), Chla-a (\({\text{RMSE}}=0.23{\mathrm{ mg m}}^{-3}\); \({P}_{bias}=-4.3 \%\) y\({r}_{P}=0.94\mathrm{ con} p<0.05\)), and SST (\({\text{RMSE}}=2.3^\circ {\text{C}}\); \({P}_{bias}=-2.2 \%\) y\({r}_{P}=0.92\mathrm{ con} p<0.05\)) establish that although in some cases there was a slight over/underestimation, the satellite estimates consistently represent the variability and average values measured in situ. On the other hand, the spatio-temporal analysis of the POC allowed us to identify two seasons with their respective transition periods and five subregions in which the POC is characterized by having its maximum variability; two of these coincide with the locations of the eddies reported for the winter and summer seasons in the LPB, while the following three are located: one in the coastal zone and in the two areas in which the LPB interacts with the GC. The associations, variability nodes, and multiple linear regression analysis suggest that POC fluctuations in the LPB respond mainly to biological processes and, to some extent, to the seasonality of SST and wind. Finally, our results justify the use of the MODIS-Aqua satellite POC for studies in marine-coastal water bodies with similar characteristics to the LPB and suggest that this water body can be considered a reservoir for the marine region of northwestern Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used in this work is available in the portals mentioned in the Satellite Data and In situ Data sections.

References

  • Abbas MM, Melesse AM, Scinto LJ, Rehage JS (2019) Satellite estimation of chlorophyll-a using moderate resolution imaging spectroradiometer (MODIS) sensor in shallow coastal water bodies: validation and improvement. Water 11(8):8. https://doi.org/10.3390/w11081621

    Article  CAS  Google Scholar 

  • Abhishek P, Sil S (2019) Validation of multi-scale ultra-high resolution (MUR) sea surface temperature with coastal buoys observations and applications for coastal fronts in the Bay of Bengal. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 1–4. https://doi.org/10.23919/URSIAP-RASC.2019.8738356

  • Aguirre Bahena F (2008) Dinámica de los componentes de la materia particulada suspendida y otras variables hidrológicas en la Ensenada-Bahía de La Paz, Baja California Sur, México [Thesis]. http://tesis.ipn.mx:8080/xmlui/handle/123456789/139

  • Badan-Dangon A, Dorman CE, Merrifield MA, Winant CD (1991) The lower atmosphere over the Gulf of California. J Geophys Res : Oceans 96(C9):16877–16896. https://doi.org/10.1029/91JC01433

    Article  Google Scholar 

  • Barakzehi M, Amirshahi SH, Peyvandi S, Afjeh MG (2013) Reconstruction of total radiance spectra of fluorescent samples by means of nonlinear principal component analysis. JOSA A 30(9):1862–1870. https://doi.org/10.1364/JOSAA.30.001862

    Article  Google Scholar 

  • Bernal G, Ripa P, Herguera J (2001) Oceanographic and climatic variability in the lower Gulf of California: Links with the tropics and North Pacific. Cienc Mar 27(4):595–617. https://doi.org/10.7773/cm.v27i4.498

    Article  Google Scholar 

  • Canchala T, Alfonso-Morales W, Carvajal-Escobar Y, Cerón WL, Caicedo-Bravo E (2020) Monthly rainfall anomalies forecasting for southwestern Colombia using artificial neural networks approaches. Water 12(9):9. https://doi.org/10.3390/w12092628

    Article  Google Scholar 

  • Cervantes-Duarte R, González-Rodríguez E, Funes-Rodríguez R, Ramos-Rodríguez A, Torres-Hernández MY, Aguirre-Bahena F (2021) Variability of net primary productivity and associated biophysical drivers in Bahía de La Paz (Mexico). Remote Sensing 13(9):9. https://doi.org/10.3390/rs13091644

    Article  Google Scholar 

  • Cetinić I, Perry MJ, Briggs NT, Kallin E, D’Asaro EA, Lee CM (2012) Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment. J Geophys Res : Oceans, 117(C6). https://doi.org/10.1029/2011JC007771

  • Chen J, Quan W (2013) An improved algorithm for retrieving chlorophyll-a from the Yellow River estuary using MODIS imagery. Environ Monit Assess 185(3):2243–2255. https://doi.org/10.1007/s10661-012-2705-y

    Article  Google Scholar 

  • Coria-Monter E, Monreal-Gómez MA, Salas-de-León DA, Aldeco-Ramírez J, Merino-Ibarra M (2014) Differential distribution of diatoms and dinoflagellates in a cyclonic eddy confined in the Bay of La Paz, Gulf of California. J Geophys Res : Oceans 119(9):6258–6268. https://doi.org/10.1002/2014JC009916

    Article  Google Scholar 

  • Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Durán-Campos E, Merino-Ibarra M (2017) Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California. Estuar Coast Shelf Sci 196:290–300. https://doi.org/10.1016/j.ecss.2017.07.010

    Article  CAS  Google Scholar 

  • Cortés-Lara MC, Alvarez Borrego S, Giles Guzmán AD (1999) Efecto de la mezcla vertical sobre la distribución de nutrientes y fitoplancton en dos regiones del Golfo de California, en Verano. Revista de La Sociedad Mexicana de Historia Nat 49:193–206

    Google Scholar 

  • Duan H, Feng L, Ma R, Zhang Y, Loiselle SA (2014) Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environ Res Lett 9(8):084011. https://doi.org/10.1088/1748-9326/9/8/084011

    Article  CAS  Google Scholar 

  • Duran-Campos E, Salas-de-León DA, Monreal-Gómez MA, Aldeco-Ramírez J, Coria-Monter E (2015) Differential zooplankton aggregation due to relative vorticity in a semi-enclosed bay. Estuar Coast Shelf Sci 164:10–18. https://doi.org/10.1016/j.ecss.2015.06.030

    Article  Google Scholar 

  • Durán-Campos E, Monreal-Gómez MA, Deleón DAS, Coria-Monter E (2020) Field and satellite observations on the seasonal variability of the surface chlorophyll-a in the Bay of La Paz, Gulf of California. Mexico. Intl J Oceans Oceanogr 14(1):157. https://doi.org/10.37622/IJOO/14.1.2020.157-167

    Article  Google Scholar 

  • Evers-King H, Martinez-Vicente V, Brewin RJW, Dall’Olmo G, Hickman AE, Jackson T, Kostadinov TS, Krasemann H, Loisel H, Röttgers R, Roy S, Stramski D, Thomalla S, Platt T, Sathyendranath S (2017) Validation and intercomparison of ocean color algorithms for estimating particulate organic carbon in the oceans. Front Mar Sci https://doi.org/10.3389/fmars.2017.00251

  • Figueroa JM, Marinone SG, Lavín MF (2003) A description of geostrophic gyres in the southern Gulf of California. En O. U. Velasco Fuentes, J. Sheinbaum, & J. Ochoa (Eds.), Nonlinear Processes in Geophysical Fluid Dynamics: A tribute to the scientific work of Pedro Ripa (pp. 237–255). Springer Netherlands. https://doi.org/10.1007/978-94-010-0074-1_14

  • García-Oliva F, Camou A, Maass M (2002) El clima de la región central de la costa del Pacífico mexicano (Primera, Vol. 21). Universidad Nacional Autónoma de México

  • Gardner WD, Mishonov AV, Richardson MJ (2006) Global POC concentrations from in-situ and satellite data. Deep Sea Res Part II 53(5):718–740. https://doi.org/10.1016/j.dsr2.2006.01.029

    Article  CAS  Google Scholar 

  • Gross M (2017) A multi model surface wind climatology for the Gulf of California (arXiv:1704.05922). arXiv. http://arxiv.org/abs/1704.05922

  • Hernández-Ayón JM, Chapa-Balcorta C, Delgadillo-Hinojosa F, Camacho-Ibar VF, Huerta-Díaz MA, Santamaría-del-Angel E, Galindo-Bect S, Segovia-Zavala JA (2013) Dynamics of dissolved inorganic carbon in the Midriff Islands of the Gulf of California: influence of water masses. Ciencias Marinas 39(2):2. https://doi.org/10.7773/cm.v39i2.2243

    Article  CAS  Google Scholar 

  • Herrera-Cervantes H (2019) Sea surface temperature, ocean color and wind forcing patterns in the Bay of La Paz. Gulf of California: seasonal variability. Atmósfera 32(1):25–38. https://doi.org/10.20937/atm.2019.32.01.03

    Article  CAS  Google Scholar 

  • Kandasamy P, Sarangi R, Saravanakumar A, Allimuthu D, Ramalingam S, Poornima D (2019) Influence of sea surface temperature and chlorophyll-a on the distribution of particulate organic carbon in the southwest Bay of Bengal

  • Koestner D, Stramski D, Reynolds RA (2022) A multivariable empirical algorithm for estimating particulate organic carbon concentration in marine environments from optical backscattering and chlorophyll-a measurements. Front Mar Sci 9:941950. https://doi.org/10.3389/fmars.2022.941950

    Article  Google Scholar 

  • Le C, Lehrter JC, Hu C, MacIntyre H, Beck M (2017) Satellite observation of particulate organic carbon dynamics in two river-dominated estuaries. J Geophys Res Oceans 122(1):555–569. https://doi.org/10.1002/2016JC012275

    Article  CAS  Google Scholar 

  • Lluch-cota S-E (2000) Coastal upwelling in the eastern Gulf of California. Oceanol Acta 23(6):731–740. https://doi.org/10.1016/S0399-1784(00)00121-3

    Article  Google Scholar 

  • Lora-Cabrera Y (2021) Variación espaciotemporal y preferencias ambientales de los principales grupos de zooplancton en La Paz, B. C. S. durante un periodo anual [Master Thesis, Centro de Investigaciones Biológicas del Noroeste, S.C.]. http://dspace.cibnor.mx:8080/handle/123456789/3096

  • Martínez-López A, Cervantes-Duarte R, Reyes-Salinas A, Valdez-Holguín JE (2001) Cambio estacional de clorofila a en la Bahía de La Paz, B. C. S., México. Hidrobiológica 11(1):45–52

    Google Scholar 

  • Miró JJ, Caselles V, Estrela MJ (2017) Multiple imputation of rainfall missing data in the Iberian Mediterranean context. Atmos Res 197:313–330. https://doi.org/10.1016/j.atmosres.2017.07.016

    Article  Google Scholar 

  • Monreal-Gómez MA, Molina-Cruz A, Salas-de-León DA (2001) Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1998. J Mar Syst 30(3):305–315. https://doi.org/10.1016/S0924-7963(01)00064-1

    Article  Google Scholar 

  • Morales-Acuña E, Linero-Cueto J, Canales Fausto A (2021) Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region. Hydrology. https://doi.org/10.3390/hydrology8030128

  • Obeso-Nieblas M, Gaviño Rodríguez JH, Jiménez Illescas AR, Shirasago German B (2002) Simulación numérica de la circulación por marea y viento del noroeste y sur en la Bahía De La Paz B.C.S. Oceánides 17(1):1–12

    Google Scholar 

  • Obeso-Nieblas M, Shirasago-Germán B, Gaviño-Rodríguez J, Perez-Lezama E, Obeso-Huerta H, Jiménez-Illescas Á (2008) Variabilidad hidrográfica en Bahía de La Paz, Golfo de California, México (1995–2005). Rev Biol Mar Oceanogr 43(3):559–567. https://doi.org/10.4067/S0718-19572008000300015

    Article  Google Scholar 

  • Obeso-Nieblas M, Gaviño-Rodríguez JH, Obeso-Huerta H, Muñoz-Casillas SI (2014) Variabilidad espacial termohalina, masas de agua y circulación geostrófica en Bahía de La Paz, Golfo de California. Rev Biol Mar Oceanogr 49(3):413–426. https://doi.org/10.4067/S0718-19572014000300002

    Article  Google Scholar 

  • Parés-Sierra A, Mascarenhas A, Marinone SG, Castro R (2003) Temporal and spatial variation of the surface winds in the Gulf of California. Geophys Res Lett 30(6). https://doi.org/10.1029/2002GL016716

  • Portela E, Beier E, Barton ED, Castro R, Godínez V, Palacios-Hernández E, Fiedler PC, Sánchez-Velasco L, Trasviña A (2016) Water masses and circulation in the tropical Pacific off central Mexico and surrounding areas. J Phys Oceanogr 46(10):3069–3081. https://doi.org/10.1175/JPO-D-16-0068.1

    Article  Google Scholar 

  • Reyes-Salinas A, Cervantes-Duarte R, Morales-Pérez RA, Valdez-Holguín JE (2003) Variabilidad estacional de la productividad primaria y su relación con la estratificación vertical en la Bahía de la Paz, B.C.S. Hidrobiológica 13(2):103–110

    Google Scholar 

  • Rouf MA, Golder MR, Sumana ZA (2021a) Satellite-based observation of particulate organic carbon in the northern Bay of Bengal. Environ Adv 6:100124. https://doi.org/10.1016/j.envadv.2021.100124

    Article  CAS  Google Scholar 

  • Rouf MA, Golder MR, Sumana ZA (2021b) Satellite-based observation of particulate organic carbon in the northern Bay of Bengal. Environ Adv 6:100–124. https://doi.org/10.1016/j.envadv.2021.100124

    Article  CAS  Google Scholar 

  • Ruessink BG, van Enckevort IMJ, Kuriyama Y (2004) Non-linear principal component analysis of nearshore bathymetry. Mar Geol 203(1):185–197. https://doi.org/10.1016/S0025-3227(03)00334-7

    Article  Google Scholar 

  • Sánchez-Martínez MA (1997) Interacción de variables hidroquímicas entre la Ensenada de La Paz y la Bahía de La Paz, B.C.S., México [Thesis, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas]. http://www.repositoriodigital.ipn.mx//handle/123456789/14820

  • Sánchez-Velasco L, Beier E, Avalos-García C, Lavín MF (2006) Fish larval assemblages and geostrophic circulation in La Paz Bay and the surrounding southwestern Gulf of California region. J Plankton Res 28(11):1081–1098. https://doi.org/10.1093/plankt/fbl040

  • Scholz M, Fraunholz M, Selbig J (2008) Nonlinear principal component analysis: neural network models and applications. En A. N. Gorban, B. Kégl, D. C. Wunsch, & A. Y. Zinovyev (Eds.), Principal Manifolds for Data Visualization and Dimension Reduction (pp. 44–67). Springer. https://doi.org/10.1007/978-3-540-73750-6_2

  • Shen Z, Yang H, Liu Q (2020) Particulate organic carbon and its composition in Jiaozhou Bay. En Z. Shen (Ed.), Studies of the Biogeochemistry of Typical Estuaries and Bays in China (pp. 227–235). Springer. https://doi.org/10.1007/978-3-662-58169-8_14

  • Silverberg N, Aguirre F, Aguíñiga S, Romero N (2006) Flujo vertical de materia particulada en la Cuenca Alfonso, Bahía de La Paz, durante 2002. Cienc Mar 32(1A):73–82

    Article  Google Scholar 

  • Silverberg N, Aguirre-Bahena F, Mucci A (2014) Time-series measurements of settling particulate matter in Alfonso Basin, La Paz Bay, southwestern Gulf of California. Cont Shelf Res 84:169–187. https://doi.org/10.1016/j.csr.2014.05.005

    Article  Google Scholar 

  • Silverberg N, Aguirre F, Cortés MM, Urcádiz Cázares FJ (2007) Flujos verticales de carbono orgánico e inorgánico particulado en Cuenca Alfonso, Bahía de La Paz y comparación con otros ambientes en el norte de México. Carbono en Ecosistemas Acuáticos de México: Instituto Nacional de Ecología, CICESE

  • Son Y-B, Gardner WD (2010) Determining spatial and temporal variations of surface particulate organic carbon (POC) using in situ measurements and remote sensing data in the northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$. The Sea: J Kor Soc Oceanog 15(2):51–61

    Google Scholar 

  • Son Y-B, Gardner WD (2011) Climatological variability of surface particulate organic carbon (POC) and physical processes based on ocean color data in the Gulf of Mexico. Kor J Remote Sensing 27(3):235–258. https://doi.org/10.7780/kjrs.2011.27.3.235

    Article  Google Scholar 

  • Son YB, Gardner WD, Mishonov AV, Richardson MJ (2009) Multispectral remote-sensing algorithms for particulate organic carbon (POC): the Gulf of Mexico. Remote Sens Environ 113(1):50–61. https://doi.org/10.1016/j.rse.2008.08.011

    Article  Google Scholar 

  • Soto-Mardones L, Marinone SG, Parés-Sierra A (1999) Variabilidad espaciotemporal de la temperatura superficial del mar en el Golfo de California. Ciencias marinas 25(1):1–30

    Article  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583. https://doi.org/10.1641/B570707

    Article  Google Scholar 

  • Stramska M (2014) Particulate organic carbon in the surface waters of the North Atlantic: spatial and temporal variability based on satellite ocean colour. Int J Remote Sens 35(13):4717–4738. https://doi.org/10.1080/01431161.2014.919686

    Article  Google Scholar 

  • Stramski D, Reynolds RA, Babin M, Kaczmarek S, Lewis MR, Röttgers R, Sciandra A, Stramska M, Twardowski MS, Franz BA, Claustre H (2008) Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5(1):171–201. https://doi.org/10.5194/bg-5-171-2008

    Article  CAS  Google Scholar 

  • Stramski D, Joshi I, Reynolds RA (2022) Ocean color algorithms to estimate the concentration of particulate organic carbon in surface waters of the global ocean in support of a long-term data record from multiple satellite missions. Remote Sens Environ 269:112776. https://doi.org/10.1016/j.rse.2021.112776

    Article  Google Scholar 

  • Sukresno B, Jatisworo D, Hanintyo R (2021) Validation of sea surface temperature from GCOM-C satellite using iQuam datasets and MUR-SST in Indonesian waters. Indonesian Journal of Geography, p 53. https://doi.org/10.22146/ijg.53790

  • Świrgoń M, Stramska M (2015) Comparison of in situ and satellite ocean color determinations of particulate organic carbon concentration in the global ocean. Oceanologia 57(1):25–31. https://doi.org/10.1016/j.oceano.2014.09.002

    Article  Google Scholar 

  • Thomson RE, Emery WJ (2014) Data Analysis Methods in Physical Oceanography (3.a ed.). Elsevier, p 701

  • Triana K, Wahyudi AJ, Murakami-Sugihara N, Ogawa H (2021) Spatial and temporal variations in particulate organic carbon in Indonesian waters over two decades. Mar Freshw Res 72(12):1782–1797. https://doi.org/10.1071/MF20264

    Article  CAS  Google Scholar 

  • Urcádiz Cázares FJ (2005) Flujo de cocolitos (cocolitóforos) y su aporte de CaCO3 evaluado con trampa de sedimentos en la Cuenca Alfonso (Bahía de La Paz), Golfo de California, México. https://doi.org/10.13140/RG.2.2.28482.73921

  • Vazquez-Cuervo J, Castro SL, Steele M, Gentemann C, Gomez-Valdes J, Tang W (2022) Comparison of GHRSST SST analysis in the Arctic Ocean and Alaskan Coastal Waters using saildrones. Remote Sensing 14(3):3. https://doi.org/10.3390/rs14030692

  • Vázquez-Hurtado M, Maldonado-García M, Lechuga-Devéze CH, Acosta-Salmón H, Ortega-Rubio A (2010) La pesquería artesanal en la Bahía de La Paz y su área oceánica adyacente (Golfo de California, México). Cienc Mar 36(4):433–444

    Article  Google Scholar 

  • Verdugo-Díaz G, Martínez-López A, Villegas-Aguilera MM, Gaxiola-Castro G (2014) Producción primaria y eficiencia fotosintética en Cuenca Alfonso, Bahía de La Paz, Golfo de California, México. Rev Biol Mar Oceanogr 49(3):527–536. https://doi.org/10.4067/S0718-19572014000300009

    Article  Google Scholar 

  • Verdugo-Díaz G (2004) Respuesta ecofisiológica del fitoplancton ante la variabilidad ambiental en una Bahía subtropical de Baja California Sur, México [PhD thesis, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas]. http://www.repositoriodigital.ipn.mx//handle/123456789/14346

  • Villegas-Aguilera MM (2009) Fitoplancton silíceo de la zona eufótica, como señal de la productividad primaria en Cuenca Alfonso, Golfo de California [Thesis, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas]. http://www.repositoriodigital.ipn.mx//handle/123456789/14125

  • Wahyudi AJ, Febriani F, Triana K (2023) Multi-temporal variability forecast of particulate organic carbon in the Indonesian seas. Environ Monit Assess 195(3):388. https://doi.org/10.1007/s10661-023-10981-9

    Article  Google Scholar 

  • Wakamatsu L, Britten GL, Styles EJ, Fischer AM (2022) Chlorophyll-a and sea surface temperature changes in relation to paralytic shellfish toxin production off the East Coast of Tasmania, Australia. Remote Sensing 14(3):3. https://doi.org/10.3390/rs14030665

  • Winogradow A, Mackiewicz A, Pempkowiak J (2019) Seasonal changes in particulate organic matter (POM) concentrations and properties measured from deep areas of the Baltic Sea. Oceanologia 61(4):505–521. https://doi.org/10.1016/j.oceano.2019.05.004

    Article  Google Scholar 

  • Xie F, Tao Z, Zhou X, Lv T, Wang J (2019) Spatial and temporal variations of particulate organic carbon sinking flux in global ocean from 2003 to 2018. Remote Sensing 11(24):24. https://doi.org/10.3390/rs11242941

    Article  Google Scholar 

  • Xing M, Yao F, Zhang J-H, Meng X, Jiang L, Bao Y (2022) Data reconstruction of daily MODIS chlorophyll-a concentration and spatio-temporal variations in the northwestern Pacific. Sci Total Environ 843:156981. https://doi.org/10.1016/j.scitotenv.2022.156981

    Article  CAS  Google Scholar 

  • Yang MM, Ishizaka J, Goes JI, Gomes HDR, Maúre EDR, Hayashi M, Katano T, Fujii N, Saitoh K, Mine T, Yamashita H, Fujii N, Mizuno A (2018) Improved MODIS-Aqua chlorophyll-a retrievals in the turbid semi-enclosed Ariake Bay. Japan. Remote Sensing 10(9):9. https://doi.org/10.3390/rs10091335

    Article  Google Scholar 

  • Yu J, Wang X, Fan H, Zhang RH (2019) Impacts of physical and biological processes on spatial and temporal variability of particulate organic carbon in the North Pacific Ocean during 2003–2017. Scient Rep 9(1)1. https://doi.org/10.1038/s41598-019-53025-4

Download references

Author information

Authors and Affiliations

Authors

Contributions

Morales-Acuña contributed to the processing and analysis of the databases and participated in the writing and revision of the manuscript. Aguíñiga-García contributed to the review and writing of the manuscript. Cervantes-Duarte contributed to the revision of the manuscript. M. Cortés contributed to the writing of the manuscript and the organization of COP databases in situ. Escobedo-Urías contributed to the writing, revision of the manuscript, and methodological development for the discussion of the results. Finally, the authors pay a recognized and special posthumous tribute to Dr. Norman Silverberg for his contributions in this branch of knowledge and for kindly providing us with the database of sediment traps.

Corresponding author

Correspondence to Enrique De Jesús Morales-Acuña.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors give consent to the journal Environmental Science and Pollution Research to publish the results presented in this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Rongrong Wan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In tribute to the life and scientific career of Dr. Norman Silverberg. Peace on his grave.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Jesús Morales-Acuña, E., Aguíñiga-García, S., Cervantes-Duarte, R. et al. Evaluation of particulate organic carbon from MODIS-Aqua in a marine-coastal water body. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-33297-8

Keywords

Navigation