Skip to main content
Log in

Deep-learning-optimized microstate network analysis for early Parkinson’s disease with mild cognitive impairment

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Graph-theory-based topological impairment of the whole-brain network has been verified to be one of the characteristics of mild cognitive impairment (MCI). However, two major challenges impede the further understanding of topological features for the personalized functional connectivity network of early Parkinson’s disease (ePD) with MCI. The uncertain of characteristic frequency band reflecting the abnormality of ePD-MCI and the setting of fixed length of sliding window at a second level in the construction of conventional brain network both limit a deeper exploration of network characteristics for ePD-MCI. Thus, a convolutional neural network is constructed first and the gradient-weighted class activation mapping method is used to determine the characteristic frequency band of the ePD-MCI. It is found that 1–4 Hz is a characteristic frequency band for recognizing MCI in ePD. Then, we propose a microstate window construction method based on electroencephalography microstate sequences to build brain functional network. By exploring the graph-theory-based topological features and their clinical correlations with cognitive impairment, it is shown that the clustering coefficient, global efficiency, and local efficiency of the occipital lobe significantly decrease in ePD-MCI, which reflects the low degree of nodes interconnection, low efficiency of parallel information transmission and low communication efficiency among the nodes in the brain network of the occipital lobe may be the neural marker of ePD-MCI. The finding of personalized topological impairments of the brain network may be a potential characteristic of early PD-MCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62173241) and the funding of STI2030-Major Projects+2022ZD0205300.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Wang, Xiaodong Zhu or Chen Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1272 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shen, X., Chu, C. et al. Deep-learning-optimized microstate network analysis for early Parkinson’s disease with mild cognitive impairment. Cogn Neurodyn (2024). https://doi.org/10.1007/s11571-023-10016-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11571-023-10016-6

Keywords

Navigation