Skip to main content
Log in

Regulatory Capital Requirements, Inflation Targeting, and Equilibrium Determinacy

  • RESEARCH ARTICLE
  • Published:
Open Economies Review Aims and scope Submit manuscript

Abstract

This paper studies the stability properties of inflation-targeting interest rate rules in an economy with regulatory capital requirements. We derive the conditions for rational expectations equilibrium determinacy in a sticky-price model augmented with the cost channel of monetary policy transmission. We find that when tightening Basel II-type capital regulations, strict inflation targeting leads to significant expansions in regions of determinacy. This result is attributed to the supply side of credit markets, and especially to the procyclical nature of bank leverage and the restricted interest rate pass-through. However, when banks maintain capital ratios beyond the required thresholds, strict inflation targeting suffers from considerable shrinking regions of determinacy. Moreover, excessive bank capital holdings may give rise to self-fulfilling business cycles. The availability of countercyclical capital buffers, as proposed by Basel III, and/or a flexible inflation targeting regime offer an antidote to these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The empirical validity of the cost channel has been documented by Barth and Ramey (2001), Christiano et al. (2005), Ravenna and Walsh (2006), Gaiotti and Secchi (2006), Fernandez-Corugedo et al. (2011), Christiano et al. (2015), and Cucciniello et al. (2022).

  2. The price index has the property that the minimum cost of a consumption bundle \({C}_{t}\) is \({P}_{t}{C}_{t}\).

  3. Given that firms are owned by households, the appropriate discount factor for firms is based on the representative household's discounted marginal utility of future consumption relative to the marginal utility of current consumption.

  4. For the alternative approach, see Cuciniello and Signoretti (2014) and Chrysanthopoulou (2021).

  5. The target can be interpreted as an exogenously given constraint stemming, for example, from prudential regulation.

  6. For expositional reasons (facilitate straightforward identification of the cost channel effects), the interest rate rule abstains from elements found to be empirically relevant such as forward-lookingelements and interest rate smoothing (see, e.g. Clarida et al. 2000).

  7. Our notion of macroprudential policy relates only to its countercyclical properties and disregards the “financial sector risk-preventing” approach of many policymakers. Our results should be interpreted in light of the above.

  8. In this rule we abstain from \({v}_{t-1}\), i.e. the idea that policymakers alter required capital very smoothly, to keep the analysis simple.

  9. For the derivation of Eq. (43) see Appendix 1.

  10. Empirical evidence suggests that the overall bank profits are procyclical (Albertazzi and Gambacorta 2010).

  11. Banks with stronger capital positions are more willing and capable of adjusting their lending rates in response to changes in central bank policy rates because they have a more stable financial base, improved access to funding, better compliance with regulations, and greater flexibility in managing risks.

  12. The opposite effect holds (reduction of the determinacy region) for higher values of \({k}_{kb}\).

  13. For \({\rm K}^{b}/B=0.33\) and \(0.12<v<0.06\) the determinacy region is drastically restricted (extreme low values for \({\varphi }_{2}\)).

  14. For a similar reasoning see Surico (2008) and Llosa and Tuesta (2009).

  15. In this case, an upper bound may be imposed to the interest rate response to current inflation that guarantees a unique equilibrium.

  16. All proofs for robustness checks are available from the authors upon request.

  17. Implementation of the Basel III framework seems to have reduced lending (Ben Naceur et al. 2018).

  18. Banks do have incentives to manage capital buffers countercyclically (e.g. for efficiency reasons, as a signal to the market, or to avoid the costs associated with having to issue fresh equity). These incentives per se are, however, insufficient to eliminate the inherent pro-cyclicality of regulatory capital requirements (Repullo and Suarez 2013).

  19. If the central bank responds to the output gap as well, the nominal interest rate hike will be less compared to strict inflation targeting.

  20. Based on baseline parameter values, for \(v<{v}_{1}=0.09,\) i.e.\(v=0.05\), the upper bound is equal to 235 (Kb/B = 0.14), whereas for \(v>{v}_{1}\), i.e.\(v=0.1\), the bound drops to 49.7. Even though shifts in the upper bounds (due to changes of \(v)\) are far more quantitatively important than the shifts of \({\varphi }_{6}\) the implied policy coefficient values are too high to be supported by empirical evidence.

  21. By using the long-run version of Eqs. (39), (40), (42), and (43), i.e. \(\pi_{t}=E_t \pi_{t+1}=\pi,\, y_{t}=E_{t}\, y_{t+1}=y\), and \(r_{t}=r, r_{t}^L=r^L, lev_{t}=lev, \,v_{t}=v\), \(v_{t}=v\), and assuming δ = 1 Eq. (40) reduces to \({k(\sigma + \varphi) + k\mathit{\Xi} X [ r(1+\sigma+\varphi)-v\varphi_\Upsilon]}y=(1-\beta -kF+\kappa\mathit{\Xi}v\varphi_{\Pi})\pi.\)  

  22. In the standard model without the cost channel, condition (55) becomes \({ 1-\frac{\left(1-\beta \right){\varphi }_{Y}}{k\left(\sigma +\varphi \right)}<\varphi }_{\Pi }\), where \(\frac{\left(1-\beta \right)}{k\left(\sigma +\varphi \right)}\) is the slope of the NKPC in the long run. Τhis condition implies a trade-off between \({\varphi }_{\Pi }\) and \({\varphi }_{Y}\); values of \({\varphi }_{\Pi }<1\) may still ensure determinacy provided the central bank responds more aggressively to output. The presence of the cost channel overturns this trade-off. In the case with no capital regulations, the slope of the NKPC in the long run equals \(dy/d\pi =\left(1-\beta -k\right)/k\left(\sigma +\varphi \right)<0.\)

  23. It is neglected because the subjective discount factor is calibrated very close to one, and thus, the coefficient \(\left(1-\beta \right)/k\left(\sigma +\varphi \right)\) is approximately zero.

References

  • Albertazzi U, Gambacorta L (2010) Bank profitability and taxation. J Bank Fin 34(11):2801–2810

  • Adrian T, Shin HS (2009) Money, liquidity, and monetary policy. Am Econ Rev 99(2):600–605

    Article  Google Scholar 

  • Adrian T, Shin HS (2014) Procyclical leverage and value-at-risk. Rev Financ Stud 27(2):373–403

    Article  Google Scholar 

  • Agénor RP, Alper K, da Silva LP (2013) Capital Regulation, Monetary Policy, and Financial Stability. Int J Cent Bank 9(3):198–243

    Google Scholar 

  • Agénor PR, da Silva LAP (2012) Cyclical effects of bank capital requirements with imperfect credit markets. J Financ Stab 8(1):43–56

    Article  Google Scholar 

  • Aiyar S, Calomiris CW, Wieladek T (2014) Does macro-prudential regulation leak? Evidence from a UK policy experiment. J Money Credit Bank 46(s1):181–214

    Article  Google Scholar 

  • Aksoy Y, Basso HS, Coto-Martinez J (2011) Investment cost channel and monetary transmission. Central Bank Review 11:1–13

    Google Scholar 

  • Aliaga-Díaz R, Olivero MP, Powell A (2018) Monetary Policy and Anti-Cyclical Bank Capital Regulation. Econ Inq 56(2):837–858

    Article  Google Scholar 

  • Angelini P, Enria A, Neri S, Panetta F, Quagliariello M (2010) Pro-cyclicality of capital regulation: is it a problem? How to fix it? Occasional Paper No. 74, Bank of Italy

  • Angelini P, Neri S, Panetta F (2012) Monetary and macroprudential policies. Working Paper Series No 1449, European Central Bank

  • Angelini P, Neri S, Panetta F (2014) The interaction between capital requirements and monetary policy. J Money, Credit, Bank 46(6):1073–1112

    Article  Google Scholar 

  • Angeloni I, Faia E (2013) Capital regulation and monetary policy with fragile banks. J Monet Econ 60(3):311–324

    Article  Google Scholar 

  • Alvi FH, Williamson PJ (2021) Responses to global financial standards in emerging markets: regulatory neoliberalism and the Basel II Capital Accord. Int J Fin Eco 28(3):1–16

  • Barth MJ III, Ramey VA (2001) The cost channel of monetary transmission. NBER Macroecon Annu 16:199–240

    Article  Google Scholar 

  • Benes J, Lees K (2007) Monopolistic banks and fixed rate contracts: Implications for open economy inflation targeting. Unpublished mimeo, Reserve Bank of New Zealand

  • Benes J, Kumhof M (2015) Risky bank lending and countercyclical capital buffers. J Econ Dyn Control 58:58–80

    Article  Google Scholar 

  • Ben Naceur S, Marton K, Roulet C (2018) Basel III and bank-lending: evidence from the United States and Europe. J Financ Stab 39:1–27

    Article  Google Scholar 

  • Blanchard OJ, Kahn CM (1980) The solution of linear difference models under rational expectations. Econometrica 48(5):1305–1311

    Article  Google Scholar 

  • Bils M, Klenow PJ (2004) Some evidence on the importance of sticky prices. J Polit Econ 112(5):947–985

    Article  Google Scholar 

  • Brückner M, Schabert A (2003) Supply-side effects of monetary policy and equilibrium multiplicity. Econ Lett 79(2):205–211

    Article  Google Scholar 

  • Brzoza-Brzezina M, Kolasa M, Makarski K (2013) Macroprudential policy instruments and economic imbalances in the euro area. Working Paper No. 1589, European Central Bank

  • Calvo GA (1983) Staggered prices in a utility-maximizing framework. J Monet Econ 12(3):383–398

    Article  Google Scholar 

  • Cecchetti SG, Kohler M (2018) When capital adequacy and interest rate policy are substitutes (And When They Are Not). Int J Central Bank 10(3):205–231

  • Chowdhury I, Hoffmann M, Schabert A (2006) Inflation dynamics and the cost channel of monetary transmission. Eur Econ Rev 50(4):995–1016

    Article  Google Scholar 

  • Christiano LJ, Eichenbaum M (1992) Liquidity effects and the monetary transmission mechanism. Am Ec Rev 82(2):346–353

  • Christiano LJ, Eichenbaum MS, Evans CL (2005) Nominal rigidities and the dynamic effects of a shock to monetary policy. J Polit Econ 113(1):1–45

    Article  Google Scholar 

  • Christiano LJ, Eichenbaum MS, Trabandt M (2015) Understanding the great recession. Am Econ J Macroecon 7(1):110–167

    Article  Google Scholar 

  • Christiano LJ, Ilut CL, Motto R, Rostagno M (2010a) Monetary policy and stock market booms. Working Paper No. 16402, National Bureau of Economic Research

  • Christiano LJ, Trabandt M, Walentin K (2010b) DSGE models for monetary policy analysis. In: Friedman, B.M., Woodford, M. (eds) Handbook of Monetary Economics, Vol. 3, Elsevier, pp. 285–367

  • Chrysanthopoulou X (2021)  Banks’ internalization effect and equilibrium. Working Paper No. 109275. University Library of Munich, Germany

  • Clarida R, Gali J, Gertler M (2000) Monetary policy rules and macroeconomic stability: evidence and some theory. Q J Econ 115(1):147–180

    Article  Google Scholar 

  • Cociuba SE, Shukayev M, Ueberfeldt A (2019) Managing risk taking with interest rate policy and macroprudential regulations. Econ Inq 57(2):1056–1081

    Article  Google Scholar 

  • Covas F, Fujita S (2010) Procyclicality of Capital Requirements in a General Equilibrium Model of Liquidity Dependence. Int J Cent Bank 6(34):137–173

    Google Scholar 

  • Cucciniello MC, Deleidi M, Levrero ES (2022) The cost channel of monetary policy: The case of the United States in the period 1959–2018. Struct Chang Econ Dyn 61:409–433

    Article  Google Scholar 

  • Cuciniello V, Signoretti FM (2014) Large banks, loan rate markup and monetary policy. Temi di Discussione (Working Paper) No. 987, Bank of Italy

  • Curdia V, Woodford M (2010) Credit spreads and monetary policy. J Money Credit Bank 42:3–35

    Article  Google Scholar 

  • De Jonghe O, Dewachter H, Ongena S (2020) Bank capital (requirements) and credit supply: Evidence from pillar 2 decisions. J Corp Finan 60:101518

    Article  Google Scholar 

  • De Walque G, Pierrard O, Rouabah A (2010) Financial (in) stability, supervision and liquidity injections: a dynamic general equilibrium approach. Econ J 120(549):1234–1261

    Article  Google Scholar 

  • Demirgüç-Kunt A, Laeven L, L. and R. Levine, (2004) Regulations, Market Structure, Institutions, and the Cost of Financial Intermediation. J Money Credit Bank 36:593–622

    Article  Google Scholar 

  • Dhyne E, Alvarez LJ, Le Bihan H, Veronese G, Hoffmann J, Vilmunen J (2006) Price changes in the euro area and the United States: Some facts from individual consumer price data. Journal of Economic Perspectives 20(2):171–192

    Article  Google Scholar 

  • Fernandez-Corugedo E, McMahon M, Millard S, Rachel L (2011) Understanding macroeconomic effects of working capital in the United Kingdom. Working Paper No. 422, Bank of England

  • Fraisse H, Lé M, Thesmar D (2020) The real effects of bank capital requirements. Manage Sci 66(1):5–23

    Article  Google Scholar 

  • Gaiotti E, Secchi A (2006) Is there a cost channel of monetary policy transmission? An investigation into the pricing behavior of 2,000 firms. J Money Credit Bank 38(8):2013–2037

    Article  Google Scholar 

  • Gerali A, Neri S, Sessa L, Signoretti FM (2010) Credit and Banking in a DSGE Model of the Euro Area. J Money Credit Bank 42:107–141

    Article  Google Scholar 

  • Hansen GD (1985) Indivisible labor and the business cycle. J Monet Econ 16(3):309–327

    Article  Google Scholar 

  • Hollander H (2017) Macroprudential policy with convertible debt. J Macroecon 54:285–305

    Article  Google Scholar 

  • Hülsewig O, Mayer E, Wollmershäuser T (2009) Bank behavior, incomplete interest rate pass-through, and the cost channel of monetary policy transmission. Econ Model 26(6):1310–1327

    Article  Google Scholar 

  • Ireland PN (2004) Money’s Role in the Monetary Business Cycle. J Money Credit Bank 36(6):969–983

    Article  Google Scholar 

  • Lewis V, Roth M (2018) Interest rate rules under financial dominance. J Econ Dyn Control 95:70–88

    Article  Google Scholar 

  • Llosa LG, Tuesta V (2009) Learning about monetary policy rules when the cost-channel matters. J Econ Dyn Control 33(11):1880–1896

    Article  Google Scholar 

  • Lubis A, Alexiou C, Nellis JG (2019) What can we learn from the implementation of monetary and macroprudential policies: a systematic literature review. Journal of Economic Surveys 33(4):1123–1150

    Article  Google Scholar 

  • Meh CA, Moran K (2010) The role of bank capital in the propagation of shocks. J Econ Dyn Control 34(3):555–576

    Article  Google Scholar 

  • Mishkin FS (2011) How should central banks respond to asset-price bubbles? The ‘Lean’ versus ‘Clean’ Debate After the GFC. Bulletin–June Quarter 2011, Reserve Bank of Australia

  • N’Diaye P (2009) Countercyclical macro-prudential policies in a supporting role to monetary policy. Working Paper No. 09/257, IMF

  • Pfajfar D, Santoro E (2014) Credit market distortions, asset prices and monetary policy. Macroecon Dyn 18(3):631–650

    Article  Google Scholar 

  • Qureshi IA, Ahmad G (2021) The cost-channel of monetary transmission under positive trend inflation. Econ Lett 201:109802

    Article  Google Scholar 

  • Ravenna F, Walsh CE (2006) Optimal monetary policy with the cost channel. J Monet Econ 53(2):199–216

    Article  Google Scholar 

  • Repullo R, Suarez J (2013) The procyclical effects of bank capital regulation. The Review of Financial Studies 26(2):452–490

    Article  Google Scholar 

  • Rogerson R (1988) Indivisible labor, lotteries and equilibrium. J Monet Econ 21(1):3–16

    Article  Google Scholar 

  • Rubio M, Carrasco-Gallego JA (2016) The new financial regulation in Basel III and monetary policy: a macroprudential approach. J Financ Stab 26:294–305

    Article  Google Scholar 

  • Smets F (2014) Financial stability and monetary policy: how closely interlinked? Int J Cent Bank 10(2):263–300

    Google Scholar 

  • Smith AL (2016) When does the cost channel pose a challenge to inflation targeting central banks? Eur Econ Rev 89:471–494

    Article  Google Scholar 

  • Surico P (2008) The cost channel of monetary policy and indeterminacy. Macroecon Dyn 12(5):724–735

    Article  Google Scholar 

  • Svensson LE (2012) Comment on Michael Woodford, ‘Inflation targeting and financial stability.’ Sveriges Riksbank Economic Review 1:33–39

    Google Scholar 

  • Tayler WJ, Zilberman R (2016) Macroprudential regulation, credit spreads and the role of monetary policy. J Financ Stab 26:144–158

    Article  Google Scholar 

  • Taylor JB (1993) Discretion versus policy rules in practice. Carnegie-Rochester conference series on public policy. 39:195–214

  • Teixeira JC, Silva FJ, Costa FA, Martins DM, Batista DG (2020) Banks’ profitability, institutions, and regulation in the context of the financial crisis. Int J Financ Econ 25(2):297–320

    Article  Google Scholar 

  • Vollmer U (2022) Monetary policy or macroprudential policies: what can tame the cycles? Journal of Economic Surveys 36(5):1510–1538

    Article  Google Scholar 

  • World Bank (2019) Global financial development report 2019/2020: bank regulation and supervision a decade after the global financial crisis. The World Bank, Washington

  • Woodford M (2003) Interest and prices: foundations of a theory of monetary policy. Princeton University Press, Princeton

  • Woodford M (2012) Inflation targeting and financial stability. Working Paper No. 17967, National Bureau of Economic Research

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xakousti Chrysanthopoulou.

Ethics declarations

Conflicts of Interest

The authors declare that there is no confict of interest associated with this publication, and that there has been no fnancial support for this work that could have infuenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1

Banks’ balance sheet constraint states that banks can finance their loans using either deposits or bank capital. Log-linearization of the banks’ balance sheet constraint and solving for deposits yields:

$${d}_{t}=\frac{1}{1-v}{b}_{t}-\frac{v}{1-v}{k}_{t}^{b}$$

In addition, the working capital hypothesis implies that \({b}_{t}={w}_{t}^{r}+{h}_{t}\) where \({w}_{t}^{r}\) denotes the real wage and \({h}_{t}\) the hours worked. Substituting \({y}_{t}={h}_{t}\) and households optimality condition \({w}_{t}^{r}=\left(\sigma +\varphi \right){y}_{t}\) in \({b}_{t}={w}_{t}^{r}+{h}_{t}\) leads to a modified working capital constraint:

$${b}_{t}=\left(\varphi +\sigma +1\right){y}_{t}$$

Substituting \({j}_{t}^{b}=\frac{r+spr+{k}_{kb}{v}^{3}}{rv+spr}{b}_{t}-\frac{r}{rv+spr}{d}_{t}+\frac{v}{rv+spr}{r}_{t}-\frac{{k}_{kb}{v}^{3}}{rv+spr}{k}_{t}^{b}\) into the log-linearised version of Eq. (26), that is, \({k}_{t}^{b}=\left(1-\delta \right){k}_{t-1}^{b}+\delta {j}_{t}^{b}\), we eliminate \({j}_{t}^{b}\).

Then, we substitute the first two equations for \({d}_{t}\) and \({b}_{t}\).

$$\begin{aligned}&{k}_{t}^{b}=\frac{\left(1-v\right)\left(rv+spr\right)}{\left(rv+spr+{\delta k}_{kb}{v}^{3}\right)\left(1-v\right)-\delta rv}\left(1-\delta \right)\\&{k}_{t-1}^{b}+\frac{\left(r+spr+{k}_{kb}{v}^{3}\right)\delta \left(1-v\right)-\delta r}{\left(rv+spr+{\delta k}_{kb}{v}^{3}\right)\left(1-v\right)-\delta rv}\left(\varphi +\sigma +1\right)\\&{y}_{t}+\frac{\left(1-v\right)\delta v}{\left(rv+spr+{\delta k}_{kb}{v}^{3}\right)\left(1-v\right)-\delta rv}{r}_{t}\end{aligned}$$

Substracting the variable \({k}_{t}^{b}\) from (both sides of) \({b}_{t}=\left(\varphi +\sigma +1\right){y}_{t}\) and using the definition \({lev}_{t}\equiv {b}_{t}-{k}_{t}^{b}\) we get that:

$${lev}_{t}=\left(\varphi +\sigma +1\right){y}_{t}-{k}_{t}^{b}$$

Finally, substituting the previous equation for \({k}_{t}^{b}\) and the interest rate rule, Eqs. (44) or (45) leads to Eq. (43) in the text.

1.2 Appendix 2

Equations (39), (40), (42)–(44) is the system of difference equations describing the equilibrium dynamics of our economy. After some algebraic substitutions, we can reduce the system to one involving two variables. In particular, we substitute Eqs. (42) and (43) into Eqs. (40) and (44) into Eqs. (39) and (40) and then write the model in the state space form \(A{E}_{t}{z}_{t+1}=B{z}_{t}\) where \({z}_{t}\) is the 2 × 1 vector of the endogenous variables which are non-predetermined \({z}_{t}={\left[{y}_{t},\hspace{0.33em}{\pi }_{t}\right]}^{\prime}\). Τhe 2 × 2 square matrices of the coefficients are defined as:

$$A\equiv \left[\begin{array}{cc}1& \frac{1}{\sigma }\\ 0& \frac{\beta }{1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }}\end{array}\right]$$

and

$${\rm B}\equiv \left[\begin{array}{cc}1& \frac{{\varphi }_{\Pi }}{\sigma }\\ -\frac{k\left(\sigma +\varphi \right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)}{1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }}& 1\end{array}\right]$$

  

Since, under baseline calibration, matrix \(A\) is invertible, we get that \({E}_{t}{z}_{t+1}={A}^{-1}B{z}_{t}=\Gamma {z}_{t}\), where \({\Gamma \equiv A}^{-1}B\).

$$\Gamma =\left[\begin{array}{cc}1+\frac{k\left(\sigma +\varphi \right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)}{\sigma \beta }& \frac{\beta {\varphi }_{\Pi }-\left[1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }\right]}{\beta \sigma }\\ -\frac{k\left(\sigma +\varphi \right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)}{\beta }& \frac{1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }}{\beta }\end{array}\right]$$

By simple algebra, we have that the determinant and trace of matrix \(\Gamma\) are given by, respectively:

$$\begin{aligned}{det}\left(\mathit\Gamma \right)=&\;\frac{1-\left(F-\mathit\Xi {\rm K}_{3}\right)k{\varphi }_{\mathit\Pi }}{\beta }\\&+\frac{k\left(\sigma +\varphi \right)+k\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)}{\sigma \beta }{\varphi }_{\mathit\Pi }\end{aligned}$$
$$\begin{aligned}trace\left(\mathit\Gamma \right)=&\;1+\frac{k\left(\sigma +\varphi \right)+k\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)}{\sigma \beta }\\&+\frac{1-\left(F-\mathit\Xi {\rm K}_{3}\right)k{\varphi }_{\mathit\Pi }}{\beta }\end{aligned}$$

For determinacy, the number of eigenvalues of Γ outside the unit circle must equal the number of non-predetermined endogenous variables (Blanchard and Kahn 1980). In our case, there are two non-predetermined endogenous variables, inflation and output. Following Woodford (2003), this condition is satisfied if and only if either Case I or Case II below is true.

Case I:

$${det}\;\mathit\Gamma >1$$
(A.1)
$${det}\;\mathit\Gamma -tr\mathit\Gamma >-1$$
(A.2)
$${det}\;\mathit\Gamma +tr\mathit\Gamma >-1$$
(A.3)

Case II:

$${det}\;\mathit\Gamma -tr\mathit\Gamma <-1$$
(A.4)
$${det}\;\mathit\Gamma +tr\mathit\Gamma <-1$$
(A.5)

Consider Case I. Let us first focus on (A.1) which translates into \(k{\varphi }_{\Pi }\left[\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma \right)-\mathit\Xi {\rm K}_{2}-\sigma \left(F-\mathit\Xi {\rm K}_{3}\right)\right]>-\sigma (1-\beta )\). To isolate \({\varphi }_{\Pi }\) on the LHS, we need to divide both sides of the inequality by \(\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma \right)-\mathit\Xi {\rm K}_{2}-\sigma \left(F-\mathit\Xi {\rm K}_{3}\right)\). Thus, for \(\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma \right)-\mathit\Xi {\rm K}_{2}-\sigma \left(F-\mathit\Xi {\rm K}_{3}\right)>0\), \({v>v}_{1},\) we get \({\varphi }_{\mathit\Pi }>-\sigma (1-\beta )/k\left[\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma \right)-\mathit\Xi {\rm K}_{2}-\sigma \left(F-\mathit\Xi {\rm K}_{3}\right)\right]\), The resulting condition is nested in

$${\varphi }_{\mathit\Pi }>0$$
(A.6)

In the alternative case, i.e. for \({v<v}_{1}\) and thus \(\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma \right)-\mathit\Xi {\rm K}_{2}-\sigma \left(F-\mathit\Xi {\rm K}_{3}\right)<0\), we get:

$$\begin{aligned}{\varphi }_{\Pi }<{\varphi }_{2}\equiv& \;\sigma (1-\beta )\\&/k[-\sigma -\varphi -\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}\right)+\sigma F]\end{aligned}$$
(A.7)

We now consider (A.2). This condition leads to \({\varphi }_{\mathit\Pi }k\left[\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)\right]>k\left[\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)\right]\). For every value of \(v\) we have that \(\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma \right)-\mathit\Xi {\rm K}_{2}>0\) and thereby (A.2) translates into:

$${\varphi }_{\mathit\Pi }>1$$
(A.8)

Condition (Α.3) leads to \(\begin{aligned}{\varphi }_{\mathit\Pi }k&\,\left\{-2\sigma F+\sigma +\varphi +\mathit\Xi \left(1+\sigma +\varphi +2\sigma {\rm K}_{3}-{\rm K}_{2}\right)\right\}>\\&-\left\{2\sigma \left(1+\beta \right)+k\left[\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)\right]\right\}\end{aligned}\). Again, we have to evaluate the sign of \(-2\sigma F+\sigma +\varphi +\Xi \left(1+\sigma +\varphi +2\sigma {\rm K}_{3}-{\rm K}_{2}\right)\). This turns out to be positive for every value of \(v\) and \(\sigma <\varphi\). Otherwise, this expression is negative. The assumption \(\sigma >\varphi\) corresponds to a situation in which the weight of the cost channel of monetary policy transmission is relatively larger than the weight of the demand channel. In the latter case, an explicit condition for \({\varphi }_{\Pi }\) is the following:

$${\varphi }_{\mathit\Pi }< {\varphi }_{1}\equiv \frac{2\sigma \left(1+\beta \right)+k\left[\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)\right]}{k\left[2\sigma F-\sigma -\varphi -\mathit\Xi \left(1+\sigma +\varphi -2\sigma {\rm K}_{3}+{\rm K}_{2}\right)\right]}$$
(A.9)

Putting things together, for \(\sigma >\varphi\) we can reduce the three inequalities in Case I to \(max\left\{0, 1\right\}{<\varphi }_{\Pi }<{\varphi }_{1}\) for \({v>v}_{1}\). Equation (49) from Proposition 2 then follows immediately. Otherwise, for \({v<v}_{1}\) we have that \(1{<\varphi }_{\Pi }<min\left\{{\varphi }_{1}, {\varphi }_{2}\right\}\). This results in Eq. (48) in the text.

1.3 Appendix 3

The upper bound on the inflation coefficient \({\varphi }_{2}\) intersects with the lower bound, and thus determinacy is never attained when \(\sigma \left(1-\beta \right)/k\left[-\sigma -\varphi -\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}\right)+\sigma F\right]=1\). The latter holds for \({K}^{b}/B=0.33\) and \(v<{v}_{2}=0.06\). Note that we concentrate on the upper bound \({\varphi }_{2}\) and not on \({\varphi }_{1}\) since we are interested in empirically plausible values of the inflation coefficient. For instance, under baseline parameterization, \({\varphi }_{1}\in \left(31.73, 37.25\right)\).

1.4 Appendix 4

Considering Eq. (46) with Eqs. (39), (40), (42), and (43), the reduced-form equilibrium system \({E}_{t}{z}_{t+1}={A}^{-1}B{z}_{t}=\Gamma {z}_{t}\) is characterized by the system matrix \(\Gamma\!:\)

$$\Gamma =\left[\begin{array}{cc}1+\frac{k\left(\sigma +\varphi \right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)}{\sigma \beta }& \frac{\beta {\varphi }_{\Pi }-\left[1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }\right]}{\beta \sigma }\\ -\frac{k\left(\sigma +\varphi \right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)}{\beta }& \frac{1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }}{\beta }\end{array}\right]$$

Its determinant and trace are given by, respectively:

$$\mathit{det}\left(\Gamma \right)=\frac{1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }}{\beta }+\frac{k\left(\sigma +\varphi \right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)}{\sigma \beta }{\varphi }_{\Pi }$$
$$trace\left(\Gamma \right)=1+\frac{k\left(\sigma +\varphi \right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)}{\sigma \beta }+\frac{1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }}{\beta }$$

From an argument similar to that in the proof of Proposition 1, the necessary and sufficient condition for local determinacy of REE is that the number of eigenvalues of Γ outside the unit circle must equal the number of non-predetermined endogenous variables. By Proposition C.1 of Woodford (2003), this is the case if and only if either Case I or Case II is satisfied. We start deriving policy parameter restrictions from (A.1). We can write the latter as \({\varphi }_{\Pi }k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}+{\chi }_{V}\right)-\sigma F\right]>-\sigma \left(1-\beta \right)\). We have to distinguish two cases. First, for \(\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}+{\chi }_{V}\right)-\sigma F>0,\) which holds for \({v<v}_{1}^{*}\), we have that \({\varphi }_{\Pi }>-\sigma \left(1-\beta \right)/k\left[ \sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}+{\chi }_{V}\right)-\sigma F\right]\). From the latter inequality, we get:

$${\varphi }_{\Pi }>0$$
(A.10)

Second, for \({v>v}_{1}^{*}\), we get that in terms of the inflation equation:

$${\varphi }_{\Pi }<{\varphi }_{4}\equiv \frac{\sigma \left(1-\beta \right)}{k\left[-\sigma -\varphi -\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}+{\chi }_{V}\right)+\sigma F\right]}$$
(A.11)

Next, we derive restrictions for \({\varphi }_{\Pi }\) from the condition (Α.2). This condition implies that \({\varphi }_{\Pi }k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\right]>k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\right].\) Since \(\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)>0\), the term \(\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\) is also positive. Therefore, the parameter restriction derived from fulfillmenting (Α.2) is:

$${\varphi }_{\Pi }>1$$
(A.12)

Condition (A.3) leads to \({\varphi }_{\Pi }k\left\{-2\sigma F+\sigma +\varphi +\Xi \left(1+\sigma +\varphi +2\sigma {\rm K}_{3}-{\rm K}_{2}+{\chi }_{V}\right)\right\}>-\left\{2\sigma \left(1+\beta \right)+k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\right]\right\}.\) The term \(-2\sigma F+\sigma +\varphi +\Xi \left(1+\sigma +\varphi +2\sigma {\rm K}_{3}-{\rm K}_{2}\right)\) is is negative for every value of \(v {\text{and}}\) for \(\sigma >\varphi\) (baseline assumption). In this case the upper bound for \({\varphi }_{\Pi }\) is equal to:

$${\varphi }_{\Pi }<{\varphi }_{3}\equiv \frac{2\sigma \left(1+\beta \right)+k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\right]}{k\left[2\sigma F-\sigma -\varphi -\Xi \left(1+\sigma +\varphi -2\sigma {\rm K}_{3}+{\rm K}_{2}+{\chi }_{V}\right)\right]}$$
(A.13)

Equation (52) stated in Proposition 5 follows after combining conditions (A.10), (A.12), and (A.13), for example, \(max\left\{0, 1\right\}{<\varphi }_{\Pi }<{\varphi }_{3}\), whereas the combination of (A.11)–(A.13) yields \(1{<\varphi }_{\Pi }<min\left\{{\varphi }_{3}, {\varphi }_{4}\right\}\). The latter results in Eq. (53) in the text.

Finally, when\(\sigma <\varphi\), we obtain \(max\left\{0 , 1\right\}< {\varphi }_{\Pi }<{\varphi }_{4}\) for \({v>v}_{1}^{*}\) and \({\varphi }_{\Pi }>1\) for \({v<v}_{1}^{*}\). Thus, the last part of Proposition 5, i.e. Equation (54), follows immediately.

1.5 Appendix 5

The dynamic system \({E}_{t}{z}_{t+1}={A}^{-1}B{z}_{t}=\Gamma {z}_{t}\) is now defined by Eqs. (39), (40), (42), (43), and (45). The matrix \(\Gamma\) is given by:

$$\mathit\Gamma =\left[\begin{array}{cc}1+\frac{1}{\sigma }{\varphi }_{\Upsilon}+\frac{k\left(\sigma +\varphi +F{\varphi }_{\Upsilon}\right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}-{\rm K}_{3}{\varphi }_{\Upsilon}\right)}{\sigma \beta }& \frac{\beta {\varphi }_{\Pi }-\left[1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }\right]}{\beta \sigma }\\ -\frac{k\left(\sigma +\varphi +F{\varphi }_{\Upsilon}\right)+k\Xi \left(1+\varphi +\sigma -{\rm K}_{2}-{\rm K}_{3}{\varphi }_{\Upsilon}\right)}{\beta }& \frac{1-\left(F-\Xi {\rm K}_{3}\right)k{\varphi }_{\Pi }}{\beta }\end{array}\right]$$

With

$$\begin{aligned}{det}\left(\mathit\Gamma \right)=&\;\frac{1-\left(F-\mathit\Xi {\rm K}_{3}\right)k{\varphi }_{\mathit\Pi }}{\beta }+\frac{{\varphi }_{\mathit\Upsilon}\left[1-\left(F-\mathit\Xi {\rm K}_{3}\right)k{\varphi }_{\mathit\Pi }\right]}{\sigma \beta }\\&+\frac{{\varphi }_{\mathit\Pi }k\left[\sigma +\varphi +F{\varphi }_{\mathit\Upsilon}+\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}-{\rm K}_{3}{\varphi }_{\mathit\Upsilon}\right)\right]}{\sigma \beta }\end{aligned}$$
$$\begin{aligned}trace\left(\mathit\Gamma \right)=&\;1+\frac{1}{\sigma }{\varphi }_{\mathit\Upsilon}\\&+\frac{k\left[\sigma +\varphi +F{\varphi }_{\mathit\Upsilon}+\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}-{\rm K}_{3}{\varphi }_{\mathit\Upsilon}\right)\right]}{\sigma \beta }\\&+\frac{1-\left(F-\mathit\Xi {\rm K}_{3}\right)k{\varphi }_{\mathit\Pi }}{\beta }\end{aligned}$$

The system has two non-predetermined variables, and therefore, the system will have unique rational expectations equilibrium if, and only if, Case I or Case II is satisfied. Consider Case I. Condition (A.1) corresponds to\(\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)-\sigma \left(F-\Xi {\rm K}_{3}\right)\right]k{\varphi }_{\Pi }>-\left[\sigma \left(1-\beta \right)+{\varphi }_{\Upsilon}\right]\).We distinguish two cases. First,\(\sigma +\varphi +\Xi \left(1+\varphi +\sigma \right)-\Xi {\rm K}_{2}-\sigma \left(F-\Xi {\rm K}_{3}\right)>0\), which holds for\({v>v}_{1}\), condition (A.1) implies \({\varphi }_{\Pi }>-[\sigma \left(1-\beta \right)+{\varphi }_{\Upsilon}]/k\left[\sigma \left(1-F\right)+\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}\right)\right]\). From the latter inequality, we obtain:

$${\varphi }_{\Pi }>0$$
(A.14)

Second, for \(\sigma +\varphi +\Xi \left(1+\varphi +\sigma \right)-\Xi {\rm K}_{2}-\sigma \left(F-\Xi {\rm K}_{3}\right)\), i.e. \({v<v}_{1}\), condition (A.1) takes the form:

$$\begin{aligned}{\varphi }_{\mathit\Pi }<{\varphi }_{7}\equiv&\; \left[\sigma \left(1-\beta \right)+{\varphi }_{\Upsilon}\right]/k[\sigma \left(1-F\right)+\varphi \\&+\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}\right)]\end{aligned}$$
(A.15)

Condition (A.2) is true if and only if \({\varphi }_{\Pi }k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma \right)-\Xi {\rm K}_{2}\right]>k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}-{\rm K}_{3}{\varphi }_{\Upsilon}\right)+F{\varphi }_{Y}\right]-{\varphi }_{Y}\left(1-\beta \right).\) The LHS is always positive and thereby (A.2) corresponds to:

$${\varphi }_{\Pi }>{\varphi }_{6}\equiv 1+\frac{kF-\left(1-\beta \right)-k\Xi {\rm K}_{3}}{k\left\{\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)\right\}}{\varphi }_{Y}$$
(A.16)

We derive, next, restrictions for \({\varphi }_{\Pi }\) from the condition (Α.3) which can be written as \({\varphi }_{\Pi }k\left\{-2\sigma F+\sigma +\varphi +\Xi \left(1+\sigma +\varphi +2\sigma {\rm K}_{3}-{\rm K}_{2}\right)\right\}>-\left\{2\sigma \left(1+\beta \right)+k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)\right]+\left(1+\beta +kF-k\Xi {\rm K}_{3}\right){\varphi }_{\Upsilon}\right\}\). The term \(-2\sigma F+\sigma +\varphi +\Xi \left(1+\sigma +\varphi +2\sigma {\rm K}_{3}-{\rm K}_{2}\right)\) turns out to be negative for every value of \(v\) and \(\sigma >\varphi\) (baseline assumption). In this case, the LHS is negative. In this case, another bound for \({\varphi }_{\Pi }\) is:

$${\varphi }_{\Pi }< {\varphi }_{5}\equiv \frac{2\sigma \left(1+\beta \right)+k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}\right)\right]+\left(1+\beta +kF-k\Xi {\rm K}_{3}\right){\varphi }_{Y}}{k\left\{2\sigma F-\sigma -\varphi -\Xi \left(1+\varphi +\sigma +2\sigma {\rm K}_{3}-{\rm K}_{2}\right)\right\}}$$
(A.17)

Considering all the above, we can reduce the three inequalities in Case I to \(max\left\{0, {\varphi }_{6}\right\}{<\varphi }_{\Pi }<{\varphi }_{7}\) for \({v<v}_{1}\). Equation (55) from Proposition 7 then follows immediately. Otherwise, for \({v>v}_{1}\) we have that \({\varphi }_{6}{<\varphi }_{\Pi }<min\left\{{\varphi }_{5}, { \varphi }_{7}\right\}\). This results in Eq. (56).

1.6 Appendix 6

Consider the dynamic system defined by Eqs. (39), (40), (43), (45), and (47) and written in space state for \(A{E}_{t}{z}_{t+1}=B{z}_{t}\). Since matrix A is invertible we have that \({E}_{t}{z}_{t+1}={A}^{-1}B{z}_{t}=\Gamma {z}_{t}\), where

$$\Gamma =\left[\begin{array}{cc}1+\frac{{\varphi }_{\mathit\Upsilon}}{\sigma }+\frac{k\left[\sigma +\varphi +{\varphi }_{\mathit\Upsilon}F+{\mathit\Xi} \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}-{{\rm K}_{3}\varphi }_{\mathit\Upsilon}\right)\right]}{\sigma \beta }& \frac{\beta {\varphi }_{{\mathit\Pi} }-\left[1-\left(F-{\mathit\Xi} {\rm K}_{3}\right)k{\varphi }_{{\mathit\Pi} }\right]}{\beta \sigma }\\ -\frac{k\left[\sigma +\varphi +{\varphi }_{\mathit\Upsilon}F+{\mathit\Xi} \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}-{{\rm K}_{3}\varphi }_{\mathit\Upsilon}\right)\right]}{\beta }& \frac{1-\left(F-{\mathit\Xi} {\rm K}_{3}\right)k{\varphi }_{{\mathit\Pi} }}{\beta }\end{array}\right]$$

and

$$\begin{aligned}{det}\left(\mathit\Gamma \right)=&\;\frac{1-\left(F-\mathit\Xi {\rm K}_{3}\right)k{\varphi }_{\mathit\Pi }}{\beta }+\frac{{\varphi }_{\Upsilon}\left[1-\left(F-\mathit\Xi {\rm K}_{3}\right)k{\varphi }_{\mathit\Pi }\right]}{\sigma \beta }\\&+\frac{k\left[\sigma +\varphi +{\varphi }_{\Upsilon}F+\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}-{{\rm K}_{3}\varphi }_{\Upsilon}\right)\right]}{\sigma \beta }\end{aligned}$$
$$\begin{aligned}trace\left(\mathit\Gamma \right)=&\;1+\frac{1}{\sigma }{\varphi }_{\Upsilon}\\&+\frac{k\left[\sigma +\varphi +{\varphi }_{\Upsilon}F+\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}-{{\rm K}_{3}\varphi }_{\Upsilon}\right)\right]}{\sigma \beta }\\&+\frac{1-\left(F-\mathit\Xi {\rm K}_{3}\right)k{\varphi }_{\mathit\Pi }}{\beta }\end{aligned}$$

The system has two non-predetermined variables, and therefore, the system will have unique rational expectations equilibrium if, and only if, Case I or Case II is satisfied. Condition (A.1) from Case I leads to \(\left[\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}+{\chi }_{V}\right)-\sigma F\right]k{\varphi }_{\mathit\Pi }>-\left[\sigma \left(1-\beta \right)+{\varphi }_{\mathit\Upsilon}\right]\). For \(\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}+{\chi }_{V}\right)-\sigma F>0\), which holds for \({v<v}_{1}^{*}\), we obtain \({\varphi }_{\mathit\Pi }>-\left[\sigma \left(1-\beta \right)+{\varphi }_{\mathit\Upsilon}\right]/k\left[\sigma +\varphi +\mathit\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}+{\chi }_{V}\right)-\sigma F\right]\). The resulting condition is nested in

$${\varphi }_{\Pi }>0$$
(A.18)

In the alternative case, i.e. for \({v>v}_{1}^{*}\) and thus \(\varphi >\mathit\Xi \left(\sigma +\varphi -{\chi }_{V}\right)<0\), condition (A.1) results in:

$${\varphi }_{\Pi }<{\varphi }_{10}\equiv \frac{\sigma \left(1-\beta \right)+{\varphi }_{\Upsilon}}{k\left[-\sigma -\varphi -\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+\sigma {\rm K}_{3}+{\chi }_{V}\right)+\sigma F\right]}$$
(A.19)

From condition (A.2) we find \({\varphi }_{\Pi }k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\right]>k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\right]+{F\varphi }_{\Upsilon}-\left(1-\beta \right){\varphi }_{\Upsilon}.\) Since \(\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\) is always positive, the parameter restriction derived from fulfillmenting (Α.2) is:

$${\varphi }_{\Pi }>{\varphi }_{8}\equiv 1+\frac{kF-\left(1-\beta \right)-k\Xi {\rm K}_{3}}{k\left\{\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\right\}}{\varphi }_{Y}$$
(A.20)

Condition (A.3) implies that \({\varphi }_{\Pi }k\left\{-2\sigma F+\sigma +\varphi +\Xi \left(1+\sigma +\varphi +2\sigma {\rm K}_{3}-{\rm K}_{2}+{\chi }_{V}\right)\right\}>-2\sigma \left(1+\beta \right)-k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}{+\chi }_{V}\right)\right]-\left(1+\beta +kF-k\Xi {\rm K}_{3}\right){\varphi }_{\Upsilon}.\) Since the term \(-2\sigma F+\sigma +\varphi +\Xi \left(1+\sigma +\varphi +2\sigma {\rm K}_{3}-{\rm K}_{2}+{\chi }_{V}\right)\) is negative for \(\sigma >\varphi\), the the upper bound for \({\varphi }_{\Pi }\) is:

$${\varphi }_{\Pi }<{\varphi }_{9}\equiv \frac{2\sigma \left(1+\beta \right)+k\left[\sigma +\varphi +\Xi \left(1+\varphi +\sigma -{\rm K}_{2}+{\chi }_{V}\right)\right]+\left(1+\beta +kF-k\Xi {\rm K}_{3}\right){\varphi }_{Y}}{k\left\{2\sigma F-\sigma -\varphi -\Xi \left(1+\varphi +\sigma +2\sigma {\rm K}_{3}-{\rm K}_{2}+{\chi }_{V}\right)\right\}}$$
(A.21)

Considering all the above, we can reduce the three inequalities in Case I to \(max\left\{0, {\varphi }_{8}\right\}{<\varphi }_{\Pi }<{\varphi }_{9}\) for \({v<v}_{1}^{*}\). Otherwise, for \({v>v}_{1}^{*}\) we have that \({\varphi }_{8}{<\varphi }_{\Pi }<min\left\{{\varphi }_{9}, {\varphi }_{10}\right\}\). This results in Eq. (57) in the text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrysanthopoulou, X., Mylonidis, N. & Sidiropoulos, M. Regulatory Capital Requirements, Inflation Targeting, and Equilibrium Determinacy. Open Econ Rev (2024). https://doi.org/10.1007/s11079-024-09754-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11079-024-09754-9

Keywords

JEL Classification

Navigation