Skip to main content
Log in

Biasymptotically Quasi-Periodic Solutions for Time-Dependent Hamiltonians

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider time-dependent perturbations of integrable and near-integrable Hamiltonians. Assuming the perturbation decays polynomially fast as time tends to infinity, we prove the existence of biasymptotically quasi-periodic solutions. That is, orbits converging to some quasi-periodic solutions in the future (as \(t\to+\infty\)) and the past (as \(t\to-\infty\)).

Concerning the proof, thanks to the implicit function theorem, we prove the existence of a family of orbits converging to some quasi-periodic solutions in the future and another family of motions converging to some quasi-periodic solutions in the past. Then, we look at the intersection between these two families when \(t=0\). Under suitable hypotheses on the Hamiltonian’s regularity and the perturbation’s smallness, it is a large set, and each point gives rise to biasymptotically quasi-periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I., Proof of a Theorem of A. N. Kolmogorov on the Invariance of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian, Russian Math. Surveys, 1963, vol. 18, no. 5, pp. 9–36; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 5, pp. 13-40.

    Article  Google Scholar 

  2. Arnol’d, V. I., Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics, Russian Math. Surveys, 1963, vol. 18, no. 6, pp. 85–191; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 6(114), pp. 91-192.

    Article  MathSciNet  Google Scholar 

  3. Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., A Proof of Kolmogorov’s Theorem on Invariant Tori Using Canonical Transformations Defined by the Lie Method, Nuovo Cimento B Ser. 11, 1984, vol. 79, no. 2, pp. 201–223.

    Article  MathSciNet  Google Scholar 

  4. Berti, M. and Bolle, Ph., A Nash – Moser Approach to KAM Theory, in Hamiltonian Partial Differential Equations and Applications, Ph. Guyenne, D. Nicholls, C. Sulem (Eds.), Fields Inst. Commun., vol. 75, Toronto: Fields Inst. Res. Math. Sci., 2015, pp. 255–284.

    Chapter  Google Scholar 

  5. Blazevski, D. and de la Llave, R., Time-Dependent Scattering Theory for ODEs and Applications to Reaction Dynamics, J. Phys. A, 2011, vol. 44, no. 19, 195101, 26 pp.

    Article  MathSciNet  Google Scholar 

  6. Bost, J.-B., Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel,\(\ldots\)), Seminar Bourbaki: Vol. 1984/85, Astérisque, nos. 133-134, Paris: Soc. Math. France, 1986, pp. 113–157.

    Google Scholar 

  7. Canadell, M. and de la Llave, R., KAM Tori and Whiskered Invariant Tori for Non-Autonomous Systems, Phys. D, 2015, vol. 310, pp. 104–113.

    Article  MathSciNet  Google Scholar 

  8. Chierchia, L., Lezioni di Analisi Matematica 2, London: Aracne, 1997.

    Google Scholar 

  9. Chierchia, L., KAM Lectures, in Dynamical Systems: Part 1. Hamiltonian Systems and Celestial Mechanics, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Pisa: Scuola Norm. Sup., 2003, pp. 1–55.

    Google Scholar 

  10. Féjoz, J., Démonstration du “Théorème d’Arnold” sur la stabilité du système planétaire (d’après Herman), Ergodic Theory Dynam. Systems, 2004, vol. 24, no. 5, pp. 1521–1582.

    Article  MathSciNet  Google Scholar 

  11. Fortunati, A. and Wiggins, S., Persistence of Diophantine Flows for Quadratic Nearly Integrable Hamiltonians under Slowly Decaying Aperiodic Time Dependence, Regul. Chaotic Dyn., 2014, vol. 19, no. 5, pp. 586–600.

    Article  MathSciNet  Google Scholar 

  12. Fejoz, J., Introduction to KAM Theory with a View to Celestial Mechanics, in Variational Methods, Radon Ser. Comput. Appl.Math., vol. 18, Berlin: De Gruyter, 2017, pp. 387-433.

    MathSciNet  Google Scholar 

  13. Hörmander, L., The Boundary Problems of Physical Geodesy, Arch. Rational Mech. Anal., 1976, vol. 62, no. 1, pp. 1–52.

    Article  MathSciNet  Google Scholar 

  14. Kawai, Sh., Bandrauk, A. D., Jaffé, Ch., Bartsch, Th., Palacián, J., and Uzer, T., J. Chem. Phys., 2007, vol. 126, no. 16, 164306, 12 pp.

    Article  Google Scholar 

  15. Kolmogorov, A. N., Preservation of Conditionally Periodic Movements with Small Change in the Hamilton Function, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems (Volta Memorial Conference, Como, 1977), G. Casati, J. Ford (Eds.), Lect. Notes Phys. Monogr., vol. 93, Berlin: Springer, 1979, pp. 51–56; see also: Dokl. Akad. Nauk SSSR (N. S.),1954, vol. 98, pp. 527–530.

    Google Scholar 

  16. Lee, J. M., Introduction to Smooth Manifolds, 2nd ed., Grad. Texts in Math., vol. 218, New York: Springer, 2013.

    Google Scholar 

  17. Massetti, J. E., A Normal Form à la Moser for Diffeomorphisms and a Generalization of Rüssmann’s Translated Curve Theorem to Higher Dimensions, Anal. PDE, 2018, vol. 11, no. 1, pp. 149–170.

    Article  MathSciNet  Google Scholar 

  18. Massetti, J. E., Normal Forms for Perturbations of Systems Possessing a Diophantine Invariant Torus, Ergodic Theory Dynam. Systems, 2019, vol. 39, no. 8, pp. 2176–2222.

    Article  MathSciNet  Google Scholar 

  19. Moser, J., On Invariant Curves of Area-Preserving Mappings of an Annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962, vol. 1962, pp. 1–20.

    MathSciNet  Google Scholar 

  20. Peet, M. M., A Generalized Chain Rule and a Bound on the Continuity of Solutions and Converse Lyapunov Functions, in Proc. of the 48th IEEE Conf. on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conf. (Shanghai, China, 2009), pp. 3155–3161.

  21. Pöschel, J., Integrability of Hamiltonian Systems on Cantor Sets, Comm. Pure Appl. Math., 1982, vol. 35, no. 5, pp. 653–696.

    Article  MathSciNet  Google Scholar 

  22. Pöschel, J., A Lecture on the Classical KAM Theorem, in Smooth Ergodic Theory and Its Applications (Seattle,Wash., 1999), A. Katok, R. de la Llave, Y. Pesin, H. Weiss (Eds.), Proc. Sympos. Pure Math., vol. 69, Providence, R.I.: AMS, 2001, pp. 707–732.

    Chapter  Google Scholar 

  23. Scarcella, D., Asymptotically Quasiperiodic Solutions for Time-Dependent Hamiltonians, https://arxiv.org/abs/2211.06623 (2022).

  24. Scarcella, D., Weakly Asymptotically Quasiperiodic Solutions for Time-Dependent Hamiltonians with a View to Celestial Mechanics, https://arxiv.org/abs/2211.06768 (2022).

  25. Scarcella, D., Asymptotic Motions Converging to Arbitrary Dynamics for Time-Dependent Hamiltonians, , Nonlinear Anal. Theory Methods Appl., 2024, vol. 243, 113528, 27 pp.

  26. Thieme, H. and Castillo-Chavez, C., Asymptotically Autonomous Epidemic Models, in Mathematical Population Dynamics: Analysis of Heterogeneity: Vol. 1. Theory of Epidemics, O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds.), Winnipeg: Wuerz, 1995, pp. 33-50.

    Google Scholar 

  27. Zehnder, E., Generalized Implicit Function Theorems with Applications to Some Small Divisor Problems: 1, Comm. Pure Appl. Math., 1975, vol. 28, no. 1, pp. 91–140.

    Article  MathSciNet  Google Scholar 

  28. Zehnder, E., Generalized Implicit Function Theorems with Applications to Some Small Divisor Problems: 2, Comm. Pure Appl. Math., 1976, vol. 29, no. 1, pp. 49–111.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

These results are part of my PhD thesis, which I prepared at Université Paris-Dauphine. I want to thank my thesis advisors, Abed Bounemoura and Jacques Féjoz. Without their advice and support, this work would not exist. I would also like to express my sincere gratitude to the reviewers of this work. Their valuable insights played a crucial role in the revision of this paper.

Funding

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No 754362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Scarcella.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

37J25, 37J40

APPENDIX. PROPERTIES OF NORMS

In this appendix, we prove a series of properties of the norms introduced in Section 2 (see (2.4), (2.5), (2.16) and (2.17)). But, first, we need to recall the notion of Hölder classes of functions \(C^{\sigma}\) and some properties.

We consider \(G\) as an open subset of \(\mathbb{R}^{n}\). Let \(k\geqslant 0\) be a positive integer, we define \(C^{k}(G)\) as the spaces of functions \(f:G\to\mathbb{R}\) with continuous partial derivatives \(\partial^{\alpha}f\in C^{0}(G)\) for all \(\alpha\in\mathbb{N}^{n}\) with \(|\alpha|=\alpha_{1}+\ldots+\alpha_{n}\leqslant k\) and verifying

$$|f|_{C^{k}}=\sup_{|\alpha|\leqslant k}|\partial^{\alpha}f|_{C^{0}}=\sup_{|\alpha|\leqslant k}\sup_{x\in G}|\partial^{\alpha}f(x)|<\infty.$$
Given \(\sigma=k+\mu\), with \(k\in\mathbb{Z}\), \(k\geqslant 0\) and \(0<\mu<1\), we define the Hölder spaces \(C^{\sigma}(G)\) as the spaces of functions \(f\in C^{k}(G)\) verifying
$$|f|_{C^{\sigma}}=\sup_{|\alpha|\leqslant k}|\partial^{\alpha}f|_{C^{0}}+\sup_{|\alpha|=k}\sup_{x,y\in G,x\neq y}{|\partial^{\alpha}f(x)-\partial^{\alpha}f(y)|\over|x-y|^{\mu}}<\infty.$$
(A.1)
In the case of functions \(f=(f_{1},\ldots,f_{n})\) with values in \(\mathbb{R}^{n}\), we define \(|f|_{C^{\sigma}}=\max_{1\leqslant i\leqslant n}|f_{i}|_{C^{\sigma}}\) and, in agreement with the convention made above, if \(M\) is an \(n\times n\) matrix we set \(|M|_{C^{\sigma}}=\max_{1\leqslant i,j\leqslant n}|M_{ij}|_{C^{\sigma}}\).

The following proposition contains some properties about Hölder classes of functions. We recall that \(C(\cdot)\) stands for constants depending on the parameters in brackets.

Proposition 6

We consider \(f\), \(g\in C^{\sigma}(G)\) and \(\sigma\geqslant 0\).

  1. 1)

    For all \(\beta\in\mathbb{N}^{n}\) and \(s\geqslant 0\), if \(|\beta|+s\leqslant\sigma\) then \(\left|{\partial^{|\beta|}\over\partial{x_{1}}^{\beta_{1}}\ldots\partial{x_{n}}^{\beta_{n}}}f\right|_{C^{s}}\leqslant C(n)|f|_{C^{\sigma}}\).

  2. 2)

    \(|fg|_{C^{\sigma}}\leqslant C(n,\sigma)\left(|f|_{C^{0}}|g|_{C^{\sigma}}+|f|_{C^{\sigma}}|g|_{C^{0}}\right)\).

Concerning composite functions, let \(z\) be defined on \(G_{1}\subset\mathbb{R}^{n}\) and let it take its values on \(G_{2}\subset\mathbb{R}^{n}\) where \(f\) is defined. If \(\sigma\geqslant 1\) and \(f\in C^{\sigma}(G_{2})\), \(z\in C^{\sigma}(G_{1})\), then \(f\circ z\in C^{\sigma}(G_{1})\)

  1. 3)

    \(|f\circ z|_{C^{\sigma}}\leqslant C(n,\sigma)\left(|f|_{C^{\sigma}}|z|^{\sigma}_{C^{1}}+|f|_{C^{1}}|z|_{C^{\sigma}}+|f|_{C^{0}}\right)\).

Proof

We refer to [13] for the proof.     \(\square\)

Here, we want to prove Proposition 2. For this purpose, we recall the definition of the space of functions \(\mathcal{B}_{\sigma,k}\) (see Definition 4), the norms (2.4) and (2.5), and the statement of Proposition 2.

Definition

We consider \(\sigma\geqslant 0\), a positive integer \(k\geqslant 0\), \(B\subset\mathbb{R}^{n}\) an open ball centered at the origin, and an open interval \(I\subset\mathbb{R}\). Let \(\mathcal{B}_{\sigma,k}\) be the space of functions \(f:\mathbb{T}^{n}\times B\times I\to\mathbb{R}\) such that

$$\displaystyle\begin{aligned} &\displaystyle f_{p}^{t}\in C^{\sigma+k}(\mathbb{T}^{n})\quad\mbox{for all fixed $(p,t)\in B\times I$},\\ &\displaystyle\partial^{i}_{q}f,\partial^{j}_{(q,p)}\left(\partial_{q}^{i}f\right)\in C(\mathbb{T}^{n}\times B\times I)\\ &\displaystyle\mbox{for all $(j,i)\in\mathbb{N}^{2n}\times\mathbb{N}^{n}$ with $|j|=1$ and $0\leqslant|i|\leqslant k$}.\end{aligned}$$

Concerning the norms \(|\cdot|_{\sigma,k,l}\) and \(|\cdot|_{\sigma,k,0}\) (see (2.4) and (2.5), respectively), we recall that, for all \(f\in\mathcal{B}_{\sigma,k}\) and \(l>1\),

$$\displaystyle\begin{aligned} &\displaystyle|f|_{\sigma,k,l}=\sup_{(p,t)\in B\times I}|f^{t}_{p}|_{C^{\sigma+k}}(1+|t|^{l})+\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}|_{C^{0}}(1+|t|^{l-1})\\ &\displaystyle|f|_{\sigma,k,0}=\sup_{(p,t)\in B\times I}|f^{t}_{p}|_{C^{\sigma+k}}+\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}|_{C^{0}}.\end{aligned}$$

Now, we have everything we need to rewrite the statement of Proposition 2 and prove it.

Proposition 1

Given \(\sigma\geqslant 0\) and a positive integer \(k\geqslant 0\), for all \(f\), \(g\in\mathcal{B}_{\sigma,k}\) and positive \(l\), \(m\geqslant 1\) and \(d\geqslant 0\)

  1. 1)

    \(|f|_{\sigma^{\prime},k^{\prime},l}\leqslant C(n)|f|_{\sigma,k,l}\) for all \(0\leqslant\sigma^{\prime}\leqslant\sigma\) and \(k^{\prime}\in\mathbb{Z}^{n}\) with \(0\leqslant k^{\prime}\leqslant k\).

  2. 2)

    \(|f|_{\sigma,k,l}\leqslant C(n,l,d)|f|_{\sigma,k,l+d}\)

  3. 3)

    \(|fg|_{\sigma,k,l+m}\leqslant C(n,\sigma,k)\left(|f|_{0,0,l}|g|_{\sigma,k,m}+|f|_{\sigma,k,l}|g|_{0,0,m}\right)+C(n,k)|f|_{0,k,l}|g|_{0,k,m}\).

Moreover, we consider \(\tilde{g}\in\mathcal{B}_{\sigma,k}\) such that \(\tilde{g}:\mathbb{T}^{n}\times B\times I\to\mathbb{T}^{n}\times B\times I\) with \(\tilde{g}(q,p,t)=(g(q,p,t),p,t)\). Then \(f\circ\tilde{g}\in\mathcal{B}_{\sigma,k}\) and

  1. 4)

    \(|f\circ\tilde{g}|_{\sigma,k,l+m}\leqslant C(n,\sigma,k)\left(|f|_{\sigma,k,l}|g|^{\sigma+k}_{1,0,m}+|f|_{1,0,l}|g|_{\sigma,k,m}+|f|_{0,0,l+m}\right)\) \(\hskip 65.441339pt+C(n,k)\left(|f|_{1,k,l}|g|_{0,0,m}+|f|_{0,k,l}|g|_{0,k,m}+|f|_{0,k,l+m}\right)\left(1+|g|_{0,k,0}^{k}\right)\).

Before the proof, we observe that the previous properties are still verified when \(l=m=0\) or only one of the two parameters, \(l\) or \(m\), is zero.

Proof

The proof rests on Proposition 6. The proof of 1 is a consequence of property 1 of Proposition 6. In fact, for all \(0\leqslant\sigma^{\prime}\leqslant\sigma\) and \(k^{\prime}\in\mathbb{Z}^{n}\) with \(0\leqslant k^{\prime}\leqslant k\), we note that

$$\displaystyle\begin{aligned} &\displaystyle|f|_{\sigma^{\prime},k^{\prime},l}=\sup_{(p,t)\in B\times I}|f^{t}_{p}|_{C^{\sigma^{\prime}+k^{\prime}}}(1+|t|^{l})+\max_{0\leqslant|i|\leqslant k^{\prime}}\sup_{(p,t)\in B\times I}|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}|_{C^{0}}(1+|t|^{l-1})\\ &\displaystyle\leqslant C(n)\left(\sup_{(p,t)\in B\times I}|f^{t}_{p}|_{C^{\sigma+k}}(1+|t|^{l})+\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}|_{C^{0}}(1+|t|^{l-1})\right)\\ &\displaystyle=C(n)|f|_{\sigma,k,l}.\end{aligned}$$

Concerning the proof of 2 we observe that

$$\displaystyle\begin{aligned} &\displaystyle|f|_{\sigma,k,l}=\sup_{(p,t)\in B\times I}|f^{t}_{p}|_{C^{\sigma+k}}(1+|t|^{l})+\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}|_{C^{0}}(1+|t|^{l-1})\\ &\displaystyle\leqslant C(l,d)\left(\sup_{(p,t)\in B\times I}|f^{t}_{p}|_{C^{\sigma+k}}(1+|t|^{l+d})+\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}|_{C^{0}}(1+|t|^{l+d-1})\right)\\ &\displaystyle=C(l,d)|f|_{\sigma,k,l+d},\end{aligned}$$
where in the first inequality of the latter we used \((1+|t|^{l})\leqslant C(l,d)(1+|t|^{l+d})\) and \((1+|t|^{l-1})\leqslant C(l,d)(1+|t|^{l+d-1})\).

The proof of 3 relies on property 2 of Proposition 6. In fact, for all fixed \((p,t)\in B\times\mathbb{R}\)

$$\displaystyle\begin{aligned} \displaystyle\left|f^{t}_{p}g^{t}_{p}\right|_{C^{\sigma+k}}\left(1+|t|^{l+m}\right)&\displaystyle\leqslant C(\sigma,k)\left(|f^{t}_{p}|_{C^{0}}|g^{t}_{p}|_{C^{\sigma+k}}+|f^{t}_{p}|_{C^{\sigma+k}}|g^{t}_{p}|_{C^{0}}\right)\left(1+|t|^{l}\right)\left(1+|t|^{m}\right)\\ &\displaystyle\leqslant C(\sigma,k)\Big{(}|f_{p}^{t}|_{C^{0}}\left(1+|t|^{l}\right)|g_{p}^{t}|_{C^{\sigma+k}}\left(1+|t|^{m}\right)\\ &\displaystyle{}\quad+|f_{p}^{t}|_{C^{\sigma+k}}\left(1+|t|^{l}\right)|g_{p}^{t}|_{C^{0}}\left(1+|t|^{m}\right)\Big{)}\\ &\displaystyle\leqslant C(\sigma,k)\left(|f|_{0,0,l}|g|_{\sigma,k,m}+|f|_{\sigma,k,l}|g|_{0,0,m}\right),\end{aligned}$$
where in the first line we used \(\left(1+|t|^{l+m}\right)\leqslant\left(1+|t|^{l}\right)\left(1+|t|^{m}\right)\). Taking the sup for all \((p,t)\in B\times I\) on the left-hand side of the latter, we obtain
$$\sup_{(p,t)\in B\times\mathbb{R}}\left|f^{t}_{p}g^{t}_{p}\right|_{C^{\sigma+k}}\left(1+|t|^{l+m}\right)\leqslant C(\sigma,k)\left(|f|_{0,0,l}|g|_{\sigma,k,m}+|f|_{\sigma,k,l}|g|_{0,0,m}\right).$$
It remains to estimate the second term of the norm (see the right-hand side of (2.4)). To accomplish this, we utilize the multi-index notation. For all \(\alpha\), \(i\in\mathbb{N}^{n}\) with \(|i|\leqslant k\), we observe that
$$\partial_{q}^{i}(fg)=\sum_{\alpha\leqslant i}{i\choose\alpha}\partial_{q}^{\alpha}f\partial_{q}^{i-\alpha}g,$$
(A.2)
where \(\partial_{q}^{i}=\partial_{q_{1}}^{i_{1}}\ldots\partial_{q_{n}}^{i_{n}}\), \({i\choose\alpha}={i_{1}\choose\alpha_{1}}{i_{2}\choose\alpha_{2}}\ldots{i_{n}\choose\alpha_{n}}\) and \(\alpha\leqslant i\) is equivalent to \(\alpha_{j}\leqslant i_{j}\) for all \(j=1,\ldots,n\). Taking the derivative with respect to \(p\) of (A.2), we obtain
$$\partial_{p}\partial_{q}^{i}(fg)=\sum_{\alpha\leqslant i}{i\choose\alpha}\left(\partial_{p}\partial_{q}^{\alpha}f\partial_{q}^{i-\alpha}g-\partial_{q}^{\alpha}f\partial_{p}\partial_{q}^{i-\alpha}g\right).$$
(A.3)
Thanks to the latter, we have the following estimate for all fixed \((p,t)\in B\times I\):
$$\displaystyle\begin{aligned} &\displaystyle\left|\left(\partial_{p}\partial_{q}^{i}\left(fg\right)\right)_{p}^{t}\right|_{C^{0}}\left(1+|t|^{l+m-1}\right)\\ &\displaystyle\leqslant\sum_{\alpha\leqslant i}{i\choose\alpha}\left(\left|\left(\partial_{p}\partial_{q}^{\alpha}f\right)^{t}_{p}\left(\partial_{q}^{i-\alpha}g\right)^{t}_{p}\right|_{C^{0}}+\left|\left(\partial_{q}^{\alpha}f\right)^{t}_{p}\left(\partial_{p}\partial_{q}^{i-\alpha}g\right)^{t}_{p}\right|_{C^{0}}\right)\left(1+|t|^{l+m-1}\right)\\ &\displaystyle\leqslant C(n,k)\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}\left|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}\right|_{C^{0}}\left(1+|t|^{l-1}\right)\left|g^{t}_{p}\right|_{C^{k}}\left(1+|t|^{m}\right)\\ &\displaystyle+C(n,k)\left|f^{t}_{p}\right|_{C^{k}}\left(1+|t|^{l}\right)\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}\left|\left(\partial_{p}\partial_{q}^{i}g\right)^{t}_{p}\right|_{C^{0}}\left(1+|t|^{m-1}\right).\end{aligned}$$
The first inequality in the latter is due to (A.3). For the second inequality, one has to follow these steps. Firstly, we need to estimate the terms inside the sum such that they no longer depend on \(\alpha\). Secondly, one can estimate the sum by a constant \(C(n,k)\). It is obtained by taking the maximum for all \(0\leqslant\alpha\leqslant|i|\leqslant k\), i. e., \(\sum_{\alpha\leqslant i}{i\choose\alpha}\leqslant C(n,k)\). Now, thanks to the latter,
$$\displaystyle\begin{aligned} &\displaystyle\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}\left|\left(\partial_{p}\partial_{q}^{i}\left(fg\right)\right)_{p}^{t}\right|_{C^{0}}\left(1+|t|^{l+m-1}\right)\\ &\displaystyle\leqslant C(n,k)\left(\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}\left|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}\right|_{C^{0}}\left(1+|t|^{l-1}\right)\right)|g|_{0,k,m}\\ &\displaystyle+C(n,k)|f|_{0,k,l}\left(\max_{0\leqslant|i|\leqslant k}\sup_{(p,t)\in B\times I}\left|\left(\partial_{p}\partial_{q}^{i}g\right)^{t}_{p}\right|_{C^{0}}\left(1+|t|^{m-1}\right)\right)\leqslant C(n,k)|f|_{0,k,l}|g|_{0,k,m}.\end{aligned}$$
This concludes the proof of 3. We now proceed to verify 4. First, we prove 4 for the case \(k=0\). Subsequently, we consider the case \(k\geqslant 1\). Let \(k=0\), for all fixed \((p,t)\in B\times\mathbb{R}\) and, thanks to property 3 of Proposition 6,
$$\displaystyle\begin{aligned} \displaystyle|f^{t}_{p}\circ g_{p}^{t}|_{C^{\sigma}}\left(1+|t|^{l+m}\right)&\displaystyle\leqslant C(n,\sigma)\left(\left|f_{p}^{t}\right|_{C^{\sigma}}\left|g_{p}^{t}\right|^{\sigma}_{C^{1}}+\left|f_{p}^{t}\right|_{C^{1}}\left|g_{p}^{t}\right|_{C^{\sigma}}+\left|f_{p}^{t}\right|_{C^{0}}\right)\left(1+|t|^{l+m}\right)\\ &\displaystyle\leqslant C(n,\sigma)\Big{(}\left|f_{p}^{t}\right|_{C^{\sigma}}\left(1+|t|^{l}\right)\left|g_{p}^{t}\right|^{\sigma}_{C^{1}}\left(1+|t|^{m}\right)^{\sigma}\\ &\displaystyle{}\quad+\left|f_{p}^{t}\right|_{C^{1}}\left(1+|t|^{l}\right)\left|g_{p}^{t}\right|_{C^{\sigma}}\left(1+|t|^{m}\right)\\ &\displaystyle{}\quad+\left|f_{p}^{t}\right|_{C^{0}}\left(1+|t|^{l+m}\right)\Big{)}\\ &\displaystyle\leqslant C(n,\sigma)\left(|f|_{\sigma,0,l}|g|^{\sigma}_{1,0,m}+|f|_{1,0,l}|g|_{\sigma,0,m}+|f|_{0,0,l+m}\right),\end{aligned}$$
where in the second line we used \(\left(1+|t|^{m}\right)\leqslant\left(1+|t|^{m}\right)^{\sigma}\). Taking the sup for all \((p,t)\in B\times I\) on the left-hand side of the latter,
$$\sup_{(p,t)\in B\times I}|f^{t}_{p}\circ g_{p}^{t}|_{C^{\sigma}}\left(1+|t|^{l+m}\right)\leqslant C(n,\sigma)\left(|f|_{\sigma,0,l}|g|^{\sigma}_{1,0,m}+|f|_{1,0,l}|g|_{\sigma,0,m}+|f|_{0,0,l+m}\right).$$
Concerning the second term of the norm (see (2.4)), for all fixed \((p,t)\in B\times I\)
$$\displaystyle\begin{aligned} \displaystyle\left|\left(\partial_{p}\left(f\circ\tilde{g}\right)\right)_{p}^{t}\right|_{C^{0}}\left(1+|t|^{l+m-1}\right)&\displaystyle=\left|\left(\partial_{q}f\right)^{t}_{p}\circ g^{t}_{p}\left(\partial_{p}g\right)^{t}_{p}\right|_{C^{0}}\left(1+|t|^{l+m-1}\right)\\ &\displaystyle{}\quad+\left|\left(\partial_{p}f\right)^{t}_{p}\circ g^{t}_{p}\right|_{C^{0}}\left(1+|t|^{l+m-1}\right)\\ &\displaystyle\leqslant C(n)\left|f^{t}_{p}\right|_{C^{1}}\left(1+|t|^{l}\right)\left|\left(\partial_{p}g\right)^{t}_{p}\right|_{C^{0}}\left(1+|t|^{m-1}\right)\\ &\displaystyle{}\quad+\left|\left(\partial_{p}f\right)^{t}_{p}\right|_{C^{0}}\left(1+|t|^{l+m-1}\right)\\ &\displaystyle\leqslant C(n)\left(|f|_{1,l}|g|_{\sigma,m}+|f|_{0,l+m}\right).\end{aligned}$$
Taking the sup for all \((p,t)\in B\times I\) on the left-hand side of the above inequality,
$$\sup_{(p,t)\in B\times I}\left|\left(\partial_{p}\left(f\circ\tilde{g}\right)\right)_{p}^{t}\right|_{C^{0}}\left(1+|t|^{l+m-1}\right)\leqslant C(n)\left(|f|_{1,0,l}|g|_{0,0,m}+|f|_{0,0,l+m}\right).$$
This proves 4 when \(k=0\). Now, we consider \(k\geqslant 1\). Similarly to the previous case,
$$\sup_{(p,t)\in B\times I}|f^{t}_{p}\circ g_{p}^{t}|_{C^{\sigma+k}}\left(1+|t|^{l+m}\right)\leqslant C(n,\sigma,k)\left(|f|_{\sigma,k,l}|g|^{\sigma+k}_{1,0,m}+|f|_{1,0,l}|g|_{\sigma,k,m}+|f|_{0,0,l+m}\right).$$
For the second term of the norm (2.4), we employ Faà di Bruno’s formula. Let \(d\),\(r\in\mathbb{N}\) and denote by \(\Omega_{r}^{d}\) the set of partitions of \(\{1,\ldots,r\}\subset\mathbb{N}\) into \(d\) nonempty subsets. For all \(i\in\mathbb{N}^{n}\) with \(1\leqslant|i|\leqslant k\), let \(\{\gamma_{j}\}_{j=1}^{|i|}\subset\mathbb{N}^{n}\) be any sequence of bases such that \(i=\sum_{j=1}^{|i|}\gamma_{j}\) with \(|\gamma_{j}|=1\). Here, we recall that, for all \(i\in\mathbb{N}^{n}\), \(|i|=i_{1}+\ldots+i_{n}\). Now, for all \((p,t)\in B\times I\), Faà di Bruno’s formula yields the following expression:
$$\left(\partial_{q}^{i}\left(f\circ\tilde{g}\right)\right)^{t}_{p}=\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}\underbrace{{\partial^{d}\over\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{p}\circ g_{p}^{t}}_{A_{d}}\underbrace{\sum_{\beta\in\Omega_{|i|}^{d}}\prod_{u=1}^{d}\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{p}}_{B_{d}},$$
where we point out that, for all \(\beta\in\Omega_{|i|}^{d}\), \(\beta=\{\beta_{1},\ldots,\beta_{d}\}\) is a partition of \(\Omega_{|i|}^{d}\) into \(d\) nonempty subsets. We refer to [20] for the above formula. For all \(1\leqslant h\leqslant n\), taking the derivative with respect to \(p_{h}\) of the latter,
$$\left(\partial_{p_{h}}\partial_{q}^{i}\left(f\circ\tilde{g}\right)\right)^{t}_{p}=\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}\tilde{A}_{d}B_{d}+\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}A_{d}\tilde{B}_{d},$$
(A.4)
where
$$\displaystyle\begin{aligned} \displaystyle\tilde{A}^{d}&\displaystyle=\left(\sum_{r=1}^{n}\left({\partial^{d+1}\over\partial q_{r}\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{p}\circ g_{p}^{t}\left(\partial_{p_{h}}g_{r}\right)_{p}^{t}\right)+{\partial^{d+1}\over\partial p_{h}\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{p}\circ g_{p}^{t}\right)\\ \displaystyle\tilde{B}^{d}&\displaystyle=\sum_{\beta\in\Omega_{|i|}^{d}}\sum_{r=1}^{d}\partial_{p_{h}}\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{r}}\right)^{t}_{p}\prod_{u=1,u\neq r}^{d}\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{p}.\end{aligned}$$
Now, for all fixed \((p,t)\in B\times I\), we want to estimate the norm \(|\left(\partial_{p_{h}}\partial_{q}^{i}\left(f\circ\tilde{g}\right)\right)^{t}_{p}|_{C^{0}}\). To achieve this, thanks to (A.4), it is sufficient to estimate the following quantities for all fixed \(d=1,\ldots,|i|\). In the upcoming analysis, we will make use of the properties in Proposition 6:
$$\displaystyle\begin{aligned} \displaystyle|\tilde{A}^{d}|&\displaystyle\leqslant C(n)\left(|f^{t}_{p}|_{C^{1+k}}|\partial_{p}g^{t}_{p}|_{C^{0}}+\max_{0\leqslant|i|\leqslant k}|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}|_{C^{0}}\right)\\ \displaystyle|B^{d}|&\displaystyle\leqslant C(n)\sum_{\beta\in\Omega_{|i|}^{d}}\prod_{u=1}^{d}|g^{t}_{p}|_{C^{k}}\leqslant C(n)\sum_{\beta\in\Omega_{|i|}^{d}}|g^{t}_{p}|_{C^{k}}^{d}\leqslant C(n,k)\left(1+|g^{t}_{p}|_{C^{k}}^{k}\right)\\ \displaystyle|A^{d}|&\displaystyle\leqslant C(n)|f^{t}_{p}|_{C^{k}}\\ \displaystyle|\tilde{B}^{d}|&\displaystyle\leqslant\sum_{\beta\in\Omega_{|i|}^{d}}\sum_{r=1}^{d}\max_{0\leqslant|i|\leqslant k}|\left(\partial_{p}\partial_{q}^{|i|}g\right)^{t}_{p}|_{C^{0}}\prod_{u=1,u\neq r}^{d}|g^{t}_{p}|_{C^{k}}\\ &\displaystyle\leqslant C(n,k)\max_{0\leqslant|i|\leqslant k}|\left(\partial_{p}\partial_{q}^{|i|}g\right)^{t}_{p}|_{C^{0}}\left(1+|g^{t}_{p}|_{C^{k}}^{k}\right).\end{aligned}$$
To avoid a flow of useless parameters, we have taken the maximum on the right-hand side of the above estimates for all \(1\leqslant d\leqslant|i|\leqslant k\). Consequently, the constants involved depend only on \(n\) and \(k\). Thanks to (A.4) and the latter estimates, for all \((p,t)\in B\times I\),
$$\displaystyle\begin{aligned} &\displaystyle\left|\left(\partial_{p}\partial_{q}^{i}\left(f\circ\tilde{g}\right)\right)^{t}_{p}\right|_{C^{0}}\left(1+|t|^{l+m-1}\right)\\ &\displaystyle\leqslant C(n,k)\left(|f^{t}_{p}|_{C^{1+k}}|\partial_{p}g^{t}_{p}|+\max_{0\leqslant|i|\leqslant k}|\left(\partial_{p}\partial_{q}^{i}f\right)^{t}_{p}|_{C^{0}}\right)\left(1+|g^{t}_{p}|_{C^{k}}^{k}\right)\left(1+|t|^{l+m-1}\right)\\ &\displaystyle+C(n,k)|f^{t}_{p}|_{C^{k}}\max_{0\leqslant|i|\leqslant k}|\left(\partial_{p}\partial_{q}^{|i|}g\right)^{t}_{p}|_{C^{0}}\left(1+|g^{t}_{p}|_{C^{k}}^{k}\right)\left(1+|t|^{l+m-1}\right)\\ &\displaystyle\leqslant C(n,k)\left(|f|_{1,k,l}|g|_{0,0,m}+|f|_{0,k,l}|g|_{0,k,m}+|f|_{0,k,l+m}\right)\left(1+|g|_{0,k,0}^{k}\right).\end{aligned}$$
This concludes the proof of 4.     \(\square\)

The second part of this appendix is dedicated to the proof of Proposition 4. First, let us recall the definition of the space of functions \(\mathcal{D}_{\sigma,k}\) (see Definition 5), the norms (2.16) and (2.17) and the statement of Proposition 4.

Definition

We consider \(\sigma\geqslant 0\), a positive integer \(k\geqslant 0\), \(A\subset\mathbb{R}^{n}\) and an open interval \(I\subset\mathbb{R}\). Let \(\mathcal{D}_{\sigma,k}\) be the space of functions \(f:\mathbb{T}^{n}\times A\times I\to\mathbb{R}\) such that

$$\displaystyle\begin{aligned} &\displaystyle f_{p}^{t}\in C^{\sigma+k}(\mathbb{T}^{n})\quad\mbox{for all fixed $(p,t)\in A\times I$},\\ &\displaystyle\partial^{i}_{q}f\in C(\mathbb{T}^{n}\times A\times I)\quad\mbox{for all $i\in\mathbb{N}^{n}$ with $0\leqslant|i|\leqslant k$}.\end{aligned}$$

The norms \(|\cdot|_{\sigma,k,l,L(A)}\) and \(|\cdot|_{\sigma,k,0,L(A)}\) (see (2.16) and (2.17), respectively) are defined as follows for all \(f\in\mathcal{D}_{\sigma,k}\) and \(l\geqslant 1\):

$$\displaystyle\begin{aligned} &\displaystyle|f|_{\sigma,k,l,L(A)}=\sup_{(p,t)\in A\times I}|f^{t}_{p}|_{C^{\sigma+k}}(1+|t|^{l})+\max_{0\leqslant|i|\leqslant k}\sup_{t\in I}|\partial_{q}^{i}f^{t}|_{L(A)}(1+|t|^{l-1}),\\ &\displaystyle|f|_{\sigma,k,0,L(A)}=\sup_{(p,t)\in A\times I}|f^{t}_{p}|_{C^{\sigma+k}}+\max_{0\leqslant|i|\leqslant k}\sup_{t\in I}|\partial_{q}^{i}f^{t}|_{L(A)}.\end{aligned}$$

In the last part of this appendix, we recall the statement of Proposition 4 and provide its proof.

Proposition 2

Given \(\sigma\geqslant 0\) and a positive integer \(k\geqslant 0\), for all \(f\), \(g\in\mathcal{D}_{\sigma,k}\) and positive \(l\), \(m\geqslant 1\) and \(d\geqslant 0\)

  1. 1)

    \(|f|_{\sigma^{\prime},k^{\prime},l,L(A)}\leqslant C(n)|f|_{\sigma,k,l,L(A)}\) for all \(0\leqslant\sigma^{\prime}\leqslant\sigma\) and \(k^{\prime}\in\mathbb{Z}^{n}\) with \(0\leqslant k^{\prime}\leqslant k\).

  2. 2)

    \(|f|_{\sigma,k,l,L(A)}\leqslant C(n,l,d)|f|_{\sigma,k,l+d,L(A)}.\)

  3. 3)

    \(|fg|_{\sigma,k,l+m,L(A)}\leqslant C(n,\sigma,k)\left(|f|_{0,0,l,L(A)}|g|_{\sigma,k,m,L(A)}+|f|_{\sigma,k,l,L(A)}|g|_{0,0,m,L(A)}\right)\) \(\hskip 76.822441pt+C(n,k)|f|_{0,k,l,L(A)}|g|_{0,k,m,L(A)}.\)

Moreover, we consider \(\tilde{g}\in\mathcal{D}_{\sigma,k}\) such that \(\tilde{g}:\mathbb{T}^{n}\times A\times I\to\mathbb{T}^{n}\times A\times I\) with \(\tilde{g}(q,p,t)=(g(q,p,t),p,t)\). Then \(f\circ\tilde{g}\in\mathcal{D}_{\sigma,k}\) and

  1. 4)

    \(|f\circ\tilde{g}|_{\sigma,l+m,L(A)}\leqslant C(n,\sigma,k)\left(|f|_{\sigma,k,l,L(A)}|g|^{\sigma+k}_{1,0,m,L(A)}+|f|_{1,0,l,L(A)}|g|_{\sigma,k,m,L(A)}\right)\) \(\hskip 28.452756pt+C(n,\sigma,k)|f|_{0,0,l+m,L(A)}+C(n,k)|f|_{1,k,l,L(A)}|g|_{0,0,m,L(A)}\left(1+|g|_{0,k,0,L(A)}^{k}\right)\) \(\hskip 28.452756pt+C(n,k)\left(|f|_{0,k,l,L(A)}|g|_{0,k,m,L(A)}+|f|_{0,k,l+m,L(A)}\right)\left(1+|g|_{0,k,0,L(A)}^{k}\right)\).

The previous properties are still verified when \(l=m=0\) or only one of the two parameters, \(l\) or \(m\), is zero.

Proof

The proofs of properties 1 and 2 closely resemble those of properties 1 and 2 in Proposition 2. Due to this similarity, we omit the proofs.

We prove 3. Concerning the first term of the norm (2.16), using property 2 of Proposition 6,

$$\sup_{(p,t)\in A\times I}\left|f^{t}_{p}g^{t}_{p}\right|_{C^{\sigma+k}}\left(1+|t|^{l+m}\right)\leqslant C(\sigma,k)|f|_{0,0,l,L(A)}|g|_{\sigma,k,m,L(A)}$$
$${}\quad+C(\sigma,k)|f|_{\sigma,k,l,L(A)}|g|_{0,0,m,L(A)}.$$
(A.5)
Now, we consider the second term of the norm (see the right-hand side of (2.16)). For all \(q\in\mathbb{T}^{n}\), \(\alpha\), \(i\in\mathbb{N}^{n}\) with \(|i|\leqslant k\) and for all fixed \(t\in I\) and \(x\), \(y\in A\) such that \(x\neq y\)
$$\displaystyle\begin{aligned} &\displaystyle{|\partial_{q}^{i}(fg)^{t}(q,x)-\partial_{q}^{i}(fg)^{t}(q,y)|\over|x-y|}(1+|t|^{l+m-1})\\ &\displaystyle\leqslant\sum_{\alpha\leqslant i}{i\choose\alpha}{|\partial_{q}^{\alpha}f^{t}(q,x)-\partial_{q}^{\alpha}f^{t}(q,y)|\over|x-y|}(1+|t|^{l-1})|\partial_{q}^{i-\alpha}g(q,x)|(1+|t|^{m})\\ &\displaystyle+\sum_{\alpha\leqslant i}{i\choose\alpha}{|\partial_{q}^{i-\alpha}g^{t}(q,x)-\partial_{q}^{i-\alpha}g^{t}(q,y)|\over|x-y|}(1+|t|^{m-1})|\partial_{q}^{\alpha}f(q,y)|(1+|t|^{l})\\ &\displaystyle\leqslant C(n,k)|f|_{0,k,l,L(A)}|g|_{0,k,m,L(A)}.\end{aligned}$$
Thanks to the latter and (A.5), one can conclude the proof of 3. Now, we prove 4. Similarly to the proof of Proposition 2, first we prove 4 when \(k=0\). By property 3 of Proposition 6
$$\displaystyle\begin{aligned} \displaystyle\sup_{(p,t)\in A\times I}|f^{t}_{p}\circ g_{p}^{t}|_{C^{\sigma}}\left(1+|t|^{l+m}\right)&\displaystyle\leqslant C(n,\sigma)|f|_{\sigma,0,l,L(A)}|g|^{\sigma}_{1,0,m,L(A)}\\ &\displaystyle{}\quad+C(\sigma)\left(|f|_{1,0,l,L(A)}|g|_{\sigma,0,m,L(A)}+|f|_{0,0,l+m,L(A)}\right).\end{aligned}$$
Now, we estimate the second term of the norm (see (2.16)). For all \(q\in\mathbb{T}^{n}\) and for all fixed \(t\in I\) and \(x\), \(y\in A\) such that \(x\neq y\)
$$\displaystyle\begin{aligned} &\displaystyle{|f^{t}(g^{t}(q,x),x)-f^{t}(g^{t}(q,y),y)|\over|x-y|}(1+|t|^{l+m-1})\\ &\displaystyle={|f^{t}(g^{t}(q,x),x)-f^{t}(g^{t}(q,x),y)+f^{t}(g^{t}(q,x),y)-f^{t}(g^{t}(q,y),y)|\over|x-y|}(1+|t|^{l+m-1})\\ &\displaystyle\leqslant{|f^{t}(g^{t}(q,x),x)-f^{t}(g^{t}(q,x),y)|\over|x-y|}(1+|t|^{l+m-1})\\ &\displaystyle+{|f^{t}(g^{t}(q,x),y)-f^{t}(g^{t}(q,y),y)|\over|x-y|}(1+|t|^{l+m-1})\\ &\displaystyle\leqslant C(n)\left(|f^{t}|_{L(A)}\left(1+|t|^{l+m-1}\right)+|f^{t}_{y}|_{C^{1}}\left(1+|t|^{l}\right)|g^{t}|_{L(A)}\left(1+|t|^{m-1}\right)\right)\\ &\displaystyle\leqslant C(n)\left(|f|_{0,0,l+m,L(A)}+|f|_{1,0,l,L(A)}|g|_{0,0,m,L(A)}\right),\end{aligned}$$
where we used \(|f^{t}(g^{t}(q,x),y)-f^{t}(g^{t}(q,y),y)|\leqslant|\left(\partial_{q}f\right)^{t}_{y}|_{C^{0}}|g^{t}|_{L(A)}|x-y|\). Taking the sup for all \(q\in\mathbb{T}^{n}\) and \(x\), \(y\in A\) with \(x\neq y\) on the left-hand side of the latter and then for all \(t\in I\), we conclude the proof of 4 when \(k=0\). Now, let \(k\geqslant 1\). Similarly to the previous case,
$$\displaystyle\begin{aligned} \displaystyle\sup_{(p,t)\in A\times I}|f^{t}_{p}\circ g_{p}^{t}|_{C^{\sigma+k}}\left(1+|t|^{l+m}\right)&\displaystyle\leqslant C(n,\sigma,k)|f|_{\sigma,k,l,L(A)}|g|^{\sigma+k}_{1,0,m,L(A)}\\ &\displaystyle{}\quad+C(n,\sigma,k)\left(|f|_{1,0,l,L(A)}|g|_{\sigma,k,m,L(A)}+|f|_{0,0,l+m,L(A)}\right).\end{aligned}$$
Now, we need to estimate the second term of the norm (2.16). For this reason, for all \(i\in\mathbb{N}^{n}\) with \(|i|\leqslant k\), and for all fixed \(t\in\mathbb{R}\) and \(x\), \(y\in A\) such that \(x\neq y\), we consider the following decomposition:
$$\displaystyle\hspace{-6mm}{|\partial_{q}^{i}\left(f_{x}^{t}\circ g_{x}^{t}\right)-\partial_{q}^{i}\left(f_{y}^{t}\circ g_{y}^{t}\right)|\over|x-y|}(1+|t|^{l+m-1})$$
$$\leqslant{|\partial_{q}^{i}\left(f_{x}^{t}\circ g_{x}^{t}\right)-\partial_{q}^{i}\left(f_{y}^{t}\circ g_{x}^{t}\right)|\over|x-y|}(1+|t|^{l+m-1})$$
(A.6)
$$+{|\partial_{q}^{i}\left(f_{y}^{t}\circ g_{x}^{t}\right)-\partial_{q}^{i}\left(f_{y}^{t}\circ g_{y}^{t}\right)|\over|x-y|}(1+|t|^{l+m-1}).$$
(A.7)
We will estimate (A.6) and (A.7) separately, employing Fàa di Bruno’s formula. The notation used will be consistent with that in the proof of property 4 of Proposition 2. We begin with the estimation of (A.6). For all \(i\in\mathbb{N}^{n}\) with \(1\leqslant|i|\leqslant k\), let \(\{\gamma_{j}\}_{j=1}^{|i|}\subset\mathbb{N}^{n}\) be any sequence of bases such that \(i=\sum_{j=1}^{|i|}\gamma_{j}\) with \(|\gamma_{j}|=1\). For all \((p,t)\in B\times I\), thanks to Fàa di Bruno’s formula
$$\displaystyle\hspace{-86mm}{|\partial_{q}^{i}\left(f_{x}^{t}\circ g_{x}^{t}\right)-\partial_{q}^{i}\left(f_{y}^{t}\circ g_{x}^{t}\right)|\over|x-y|}(1+|t|^{l+m-1})$$
$$\displaystyle\leqslant\left|\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}{\partial^{d}\over\partial q_{j_{1}}\ldots\partial q_{j_{d}}}\left(f^{t}_{x}\circ g_{x}^{t}-f^{t}_{y}\circ g_{x}^{t}\right)\sum_{\beta\in\Omega_{|i|}^{d}}\prod_{u=1}^{d}\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{x}\right|{(1+|t|^{l+m-1})\over|x-y|}$$
$$\displaystyle\hspace{-58mm}\leqslant C(n,k)\max_{0\leqslant|i|\leqslant k}\sup_{t\in\mathbb{R}}|\partial_{q}^{i}f^{t}|_{L(A)}(1+|t|^{l+m-1})\left(1+|g_{x}^{t}|^{k}_{C^{k}}\right)$$
$$\displaystyle\hspace{-84mm}\leqslant C(n,k)|f|_{0,k,l+m,L(A)}\left(1+|g|^{k}_{0,k,0,L(A)}\right),$$
(A.8)
where we recall that \(\Omega_{|i|}^{d}\) is the set of partitions of \(\{1,\ldots,|i|\}\subset\mathbb{N}\) into \(d\) nonempty subsets. Now, we estimate (A.7). First, we observe that by Fàa di Bruno’s formula for all \(i\in\mathbb{N}^{n}\) with \(|i|\leqslant k\), and for all fixed \(t\in I\) and \(x\), \(y\in A\) such that \(x\neq y\)
$$\displaystyle\begin{aligned} &\displaystyle\partial_{q}^{i}\left(f_{y}^{t}\circ g_{x}^{t}\right)-\partial_{q}^{i}\left(f_{y}^{t}\circ g_{y}^{t}\right)=\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}{\partial^{d}\over\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{y}\circ g_{x}^{t}\sum_{\beta\in\Omega_{|i|}^{d}}\prod_{u=1}^{d}\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{x}\\ &\displaystyle-\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}{\partial^{d}\over\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{y}\circ g_{y}^{t}\sum_{\beta\in\Omega_{|i|}^{d}}\prod_{u=1}^{d}\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{y}\\ &\displaystyle=\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}\left(A^{d}_{yx}-A^{d}_{yy}\right)B^{d}_{x}+\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}A^{d}_{yy}\left(B^{d}_{x}-B^{d}_{y}\right)\end{aligned}$$
with
$$\displaystyle\begin{aligned} \displaystyle A^{d}_{yx}&\displaystyle=&\displaystyle{\partial^{d}\over\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{y}\circ g_{x}^{t},\quad B^{d}_{x}=\sum_{\beta\in\Omega_{|i|}^{d}}\prod_{u=1}^{d}\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{x}\\ \displaystyle A^{d}_{yy}&\displaystyle=&\displaystyle{\partial^{d}\over\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{y}\circ g_{y}^{t},\quad B^{d}_{y}=\sum_{\beta\in\Omega_{|i|}^{d}}\prod_{u=1}^{d}\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{y}.\end{aligned}$$
This means that we can rewrite (A.7) as
$$\displaystyle\hspace{-23mm}{|\partial_{q}^{i}\left(f_{y}^{t}\circ g_{x}^{t}\right)-\partial_{q}^{i}\left(f_{y}^{t}\circ g_{y}^{t}\right)|\over|x-y|}(1+|t|^{l+m-1})$$
$$\displaystyle\hspace{-11mm}\leqslant\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}{|A^{d}_{yx}-A^{d}_{yy}|\over|x-y|}|B^{d}_{x}|(1+|t|^{l+m-1})$$
(A.9)
$$+\sum_{d=1}^{|i|}\sum_{j_{1}=1}^{n}\ldots\sum_{j_{d}=1}^{n}|A^{d}_{yy}|(1+|t|^{l}){|B^{d}_{x}-B^{d}_{y}|\over|x-y|}(1+|t|^{m-1}).$$
(A.10)
By the latter, we can see that, in order to estimate (A.7), we need to estimate (A.9) and (A.10). Following this purpose, we observe that
$${|A^{d}_{yx}-A^{d}_{yy}|\over|x-y|}(1+|t|^{l+m-1})\leqslant\left|{\partial^{d}\over\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{y}\circ g_{x}^{t}-{\partial^{d}\over\partial q_{j_{1}}\ldots\partial q_{j_{d}}}f^{t}_{y}\circ g_{y}^{t}\right|{(1+|t|^{l+m-1})\over|x-y|}$$
$${}\quad\leqslant C(n)|f^{t}_{y}|_{C^{1+k}}(1+|t|^{l})|g^{t}|_{L(A)}(1+|t|^{m-1})\leqslant C(n)|f|_{1,k,l,L(A)}|g|_{0,0,m,L(A)}$$
(A.11)
$$\displaystyle\hspace{-53mm}|B^{d}_{x}|\leqslant C(n)\sum_{\beta\in\Omega_{|i|}^{d}}\prod_{u=1}^{d}|g^{t}_{x}|_{C^{k}}\leqslant C(n,k)\left(1+|g|^{k}_{0,k,0,L(A)}\right)$$
(A.12)
$$\displaystyle\hspace{-53mm}|A^{d}_{yy}|(1+|t|^{l})\leqslant C(n)|f^{t}_{y}|_{C^{k}}(1+|t|^{l})\leqslant C(n)|f|_{0,k,l,L(A)}$$
(A.13)
$$\displaystyle\hspace{-3mm}{|B^{d}_{x}-B^{d}_{y}|\over|x-y|}(1+|t|^{m-1})\leqslant\sum_{\beta\in\Omega_{|i|}^{d}}{\prod_{u=1}^{d}|\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{x}-\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{y}|\over|x-y|}(1+|t|^{m-1})$$
$$\displaystyle\hspace{-50mm}{}\quad\leqslant\sum_{\beta\in\Omega_{|i|}^{d}}{|\partial_{q}^{\sum_{v\in\beta_{1}}\gamma_{v}}\left(g_{j_{1}}\right)^{t}_{x}-\partial_{q}^{\sum_{v\in\beta_{1}}\gamma_{v}}\left(g_{j_{1}}\right)^{t}_{y}|\over|x-y|}(1+|t|^{m-1})$$
$$\displaystyle\hspace{-74mm}{}\quad\times\prod_{u=2}^{d}|\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{x}-\partial_{q}^{\sum_{v\in\beta_{u}}\gamma_{v}}\left(g_{j_{u}}\right)^{t}_{y}|$$
$$\displaystyle\hspace{-50mm}{}\quad\leqslant\sum_{\beta\in\Omega_{|i|}^{d}}\max_{0\leqslant|i|\leqslant k}\sup_{t\in I}|\partial_{q}^{i}g^{t}|_{L(A)}(1+|t|^{m-1})\prod_{u=2}^{d}2|g|_{0,k,0,L(A)}$$
$$\displaystyle\hspace{-77mm}{}\quad\leqslant C(n,k)|g|_{0,k,m,L(A)}\left(1+|g|^{k}_{0,k,0,L(A)}\right).$$
(A.14)
More specifically, by (A.9)(A.14) we can estimate (A.7) in the following form:
$$\displaystyle\hspace{-63mm}{|\partial_{q}^{i}\left(f_{y}^{t}\circ g_{x}^{t}\right)-\partial_{q}^{i}\left(f_{y}^{t}\circ g_{y}^{t}\right)|\over|x-y|}(1+|t|^{l+m-1})$$
$$\leqslant C(n,k)\left(|f|_{1,k,l,L(A)}|g|_{0,0,m,L(A)}+|f|_{0,k,l,L(A)}|g|_{0,k,m,L(A)}\right)\left(1+|g|^{k}_{0,k,0,L(A)}\right).$$
(A.15)
This concludes the proof of 4 because, thanks to (A.6)(A.8) and (A.15),
$$\displaystyle\begin{aligned} &\displaystyle\max_{0\leqslant|i|\leqslant k}\sup_{t\in I}|\partial_{q}^{i}\left(f\circ\tilde{g}\right)^{t}|_{L(A)}(1+|t|^{l-1})\\ &\displaystyle\leqslant C(n,k)|f|_{0,k,l+m,L(A)}\left(1+|g|^{k}_{0,k,0,L}\right)\\ &\displaystyle+C(n,k)\left(|f|_{1,k,l,L(A)}|g|_{0,0,m,L(A)}+|f|_{0,k,l,L(A)}|g|_{0,k,m,L(A)}\right)\left(1+|g|^{k}_{0,k,0,L(A)}\right).\end{aligned}$$

    \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarcella, D. Biasymptotically Quasi-Periodic Solutions for Time-Dependent Hamiltonians. Regul. Chaot. Dyn. (2024). https://doi.org/10.1134/S1560354724510026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1560354724510026

Keywords

Navigation