Skip to main content
Log in

Output voltage tracking control of DC–DC boost converters with overcurrent protection

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper deals with the output voltage tracking problem in DC-DC boost converters under the single-loop structure, emphasizing the need for overcurrent protection. Overcurrent protection is considered as a state constraint that is applied to the inductor current. A novel current-constrained controller is proposed by designing a special dynamic controller gain that is associated with the inductor current. Unlike existing nonlinear control methods capable of implementing state constraints, the controller introduced in this paper has a relatively simple structure that simplifies execution and reduces computational complexity. In contrast to methods that limit the initial states of the system, such as invariant set theory, the proposed method expands the range of the admissible set of the initial states. Experimental results demonstrate that, under the premise of satisfying current constraints, the proposed controller has better dynamic performance and robustness when compared to the nominal controllers that do not take current constraints into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. Zhang, Y., Gao, S., Jing, S., Huang, X.: Soft-switching operation with a variable switching frequency control for switched-quasi-z-source bidirectional DC-DC converter in EVs. IEEE Trans. Ind. Electron. 70(1), 384–395 (2023)

    Article  Google Scholar 

  2. Jiang, W., Chincholkar, S.H., Chan, C.: Investigation of a voltage-mode controller for a DC-DC multilevel boost converter. IEEE Trans. Circuits Syst. 65(7), 908–912 (2018)

    Google Scholar 

  3. Hasanpour, S., Siwakoti, Y.P., Blaabjerg, F.: A new high efficiency high step-up DC/DC converter for renewable energy applications. IEEE Trans. Ind. Electron. 70(2), 1489–1500 (2023)

    Article  Google Scholar 

  4. Singh, S.K., Matwankar, C.S., Jee, M., Alam, A.: MRAS-based current estimator for DC-DC converters considering time-variant load impedance. J. Power Electron. 22(2), 210–221 (2022)

    Article  Google Scholar 

  5. Bouafassa, A., Rahmani, L., Kessal, A., Babes, B.: Unity power factor converter based on a fuzzy controller and predictive input current. ISA Trans. 53(6), 1817–1821 (2014)

    Article  Google Scholar 

  6. Afghoul, H., Krim, F., Beddar, A., Babes, B.: Real-time implementation of robust controller for PV emulator supplied shunt active power filter. 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco. Pp. 1–6. (2018)

  7. Huang, S., Li, G., Yu, H., Wang, X., Li, S., Li, Q.: Composite-disturbance-observer-based backstepping control for three-phase inverters with multiple disturbances. Control. Eng. Pract. 138, 105599 (2023)

    Article  Google Scholar 

  8. Yazici, I.: Robust voltage-mode controller for DC-DC boost converter. IET Power Electron. 8(3), 342–349 (2014)

    Article  Google Scholar 

  9. Goyal, V.K., Shukla, A.: Two-stage hybrid isolated DC-DC boost converter for high power and wide input voltage range applications. IEEE Trans. Ind. Electron. 69(7), 6751–6763 (2022)

    Article  Google Scholar 

  10. Jeon, H., Shin, S.: A power/hardware-efficient SiPM readout IC embedded in a boost converter for mobile radiation dosimeters. IEEE Trans. Power Electron. 38(1), 657–665 (2023)

    Article  Google Scholar 

  11. Li, F., He, J., Luo, P., Jiang, H., Liu, M.: Quadratic-type high step-up DC-DC converter with continuous input current integrating coupled inductor and voltage multiplier for renewable energy applications. J. Power Electron. 23(4), 555–567 (2023)

    Article  Google Scholar 

  12. Zeng, J.W., Zhang, Z., Qiao, W.: An interconnection and damping assignment passivity-based controller for a DC-DC boost converter with a constant power load. IEEE Trans. Ind. App. 50(4), 2314–2322 (2014)

    Article  Google Scholar 

  13. Arora, S., Balsara, P., Bhatia, D.: Input-output linearization of a boost converter with mixed load (constant voltage load and constant power load). IEEE Trans. Power Electron. 34(1), 815–825 (2019)

    Article  Google Scholar 

  14. Tawfik, M.A., Ahmed, A., Park, J.H.: Double boost power-decoupling topology suitable for low-voltage photovoltaic residential applications using sliding-mode impedance-shaping controller. J. Power Electron. 19(4), 881–893 (2019)

    Google Scholar 

  15. Leon-Masich, A., Valderrama-Blavi, H., Bosque-Moncusi, J.M., Maixe-Altes, J., Martinez-Salamero, L.: Sliding-mode-control-based boost converter for high-voltage-low-power applications. IEEE Trans. Ind. Electron. 62(1), 229–237 (2015)

    Article  Google Scholar 

  16. Al Zawaideh, A., Boiko, I.M.: Analysis of stability and performance of a cascaded PI sliding-mode control DC-DC boost converter via LPRS. IEEE Trans. Power Electron. 37(9), 10455–10465 (2022)

    Article  Google Scholar 

  17. Xu, Q., Jiang, W., Blaabjerg, F., Zhang, C., Zhang, X., Fernando, T.: Backstepping control for large signal stability of high boost ratio interleaved converter interfaced DC microgrids with constant power loads. IEEE Trans. Power Electron. 35(5), 5397–5407 (2020)

    Article  Google Scholar 

  18. Luchetta, A., Manetti, S., Piccirilli, M.C., Reatti, A., Corti, F., Catelani, M., Ciani, L., Kazimierczuk, M.K.: MLMVNNN for parameter fault detection in PWM DC-DC converters and its applications for buck and boost DC-DC converters. IEEE Trans. Instrum. Meas. 68(2), 439–449 (2019)

    Article  Google Scholar 

  19. Alvarez-Ramirez, J., Cervantes, I., Espinosa-Perez, G., Maya, P., Morales, A.: Stable design of PI control for DC-DC converters with an RHS zero. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(1), 103–106 (2001)

    Google Scholar 

  20. Saleem, O., Rizwan, M., Khizar, A., Ahmad, M.: Augmentation of fractional-order PI controller with nonlinear error-modulator for enhancing robustness of DC-DC boost converters. J. Power Electron. 19(4), 835–845 (2019)

    Google Scholar 

  21. Liu, L., Gao, T., Liu, Y., Tong, S., Chen, C.L., Ma, L.: Time-varying IBLFs-based adaptive control of uncertain nonlinear systems with full state constraints. Automatica 129, 109595 (2021)

    Article  MathSciNet  Google Scholar 

  22. Ohnishi, M., Notomista, G., Sugiyama, M., Egerstedt, M.: Constraint learning for control tasks with limited duration barrier functions. Automatica 127, 109504 (2021)

    Article  MathSciNet  Google Scholar 

  23. Zhao, K., Song, Y., Chen, C.L., Chen, L.: Control of nonlinear systems under dynamic constraints: a unified barrier function-based approach. Automatica 119, 109102 (2020)

    Article  MathSciNet  Google Scholar 

  24. Liu, W., Wang, X., Li, S.: Formation control for leader-follower wheeled mobile robots based on embedded control technique. IEEE Trans. Control Syst. Technol. 31(1), 265–280 (2023)

    Article  Google Scholar 

  25. Oettmeier, F.M., Neely, J., Pekarek, S., DeCarlo, R., Uthaichana, K.: MPC of switching in a boost converter using a hybrid state model with a sliding mode observer. IEEE Trans. Ind. Electron. 56(9), 3453–3466 (2009)

    Article  Google Scholar 

  26. Rodriguez, J., Pontt, J., Silva, C.A., Correa, P., Lezana, P., Cortes, P., Ammann, U.: Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54(1), 495–503 (2007)

    Article  Google Scholar 

  27. Abdel-Rahim, O., Funato, H., Haruna, J.: Novel predictive maximum power point tracking techniques for photovoltaic applications. J. Power Electron. 16(1), 277–286 (2016)

    Article  Google Scholar 

  28. Bouafassa, A., Rahmani, L., Babes, B., Bayindir, R.: Experimental design of a finite state model predictive control for improving power factor of boost rectifier. 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy. Pp. 1556–1561. (2015)

  29. Guo, T., Wang, Z., Wang, X., Li, S., Li, Q.: A simple control approach for buck converters with current-constrained technique. IEEE Trans. Control Syst. Technol. 27(1), 418–425 (2019)

    Article  Google Scholar 

  30. Karamanakos, P., Geyer, T., Manias, S.: Direct voltage control of DC-DC boost converters using enumeration-based model predictive control. IEEE Trans. Power Electron. 29(2), 968–978 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC: No. 62373099, 62173221, 62025302) the Open Fund of Jiangsu Engineering Technology Center for Energy Storage Conversion and Application (No. NY80-23-023), and the Key R & D Plan of Jiangsu Province (No. BE2020082-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Huang, S. & Wang, X. Output voltage tracking control of DC–DC boost converters with overcurrent protection. J. Power Electron. (2024). https://doi.org/10.1007/s43236-024-00815-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43236-024-00815-3

Keywords

Navigation