Skip to main content
Log in

DFT Analysis of Structural, Energetic and Electronic Properties of Doped, Encapsulated, and Decorated First-Row Transition Metals on B12N12 Nanocage: Part 1

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present study explores the modification of B12N12 nanocages with first-row transition metals (3d TM atoms) in the configurations: doped (TMB11N12, B12N11TM), decorated (TM@b64, TM@b66) and encapsulated (TM@B12N12) by DFT-D3 method at B3LYP/6-31G (d,p) level of theory, revealing enhanced stability and reactivity in decorated systems. Spin multiplicity analysis revealed the most stable spin state for each nanocage, showing that decorated systems are more stable at high spin. During geometry optimization, structural rearrangements were observed, with Cr@B12N12 emerging as the most stable configuration of the series, exhibiting a strong metal/cage affinity. The DOS study showed that modification with TM significantly changes the electronic properties of the nanocage, revealing a reduction in the HOMO–LUMO gap, increased reactivity and offering valuable information for applications in sensing, catalysis and energy storage. The RMSD data show that, in encapsulated systems, the TM moves from the center of mass to establish more intense interactions with the cage, as seen in the bond order analysis and it is also observed that Zn weakly interacts with B12N12 at any of the studied configurations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study

References

  1. A.N. Enyashin, Theoretical studies of inorganic fullerenes and fullerene-like nanoparticles. Isr. J. Chem. 50, 468–483 (2010)

    Article  CAS  Google Scholar 

  2. F. Jensen, H. Toftlund, Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett. 201, 89–96 (1993)

    Article  CAS  Google Scholar 

  3. W. Xie, J. Wang, J. Wang, X. Wu, Z. Wang, R.-Q. Zhang, High-angular-momentum orbitals and superatomic characteristics of boron-nitrogen cages. J. Phys. Chem. C 124, 3881–3885 (2020)

    Article  CAS  Google Scholar 

  4. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Toxic CO detection by B12N12 nanocluster. Microelectron. J. 42, 1400–1403 (2011)

    Article  CAS  Google Scholar 

  5. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J. Mol. Model. 18, 2653–2658 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. M. Abbasi, E. Nemati-Kande, M.D. Mohammadi, Doping of the first row transition metals onto B12N12 nanocage: a DFT study. Comput. Theor. Chem. 1132, 1–11 (2018)

    Article  CAS  Google Scholar 

  7. A.S. Rad, K. Ayub, Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 131, 135–141 (2016)

    Article  Google Scholar 

  8. Z. Zhao, Z. Li, Q. Wang, Structures, electronic and magnetic properties of transition metal atoms encapsulated in B12N12 cage. Chem. Phys. Lett. 739, 136922 (2020)

    Article  CAS  Google Scholar 

  9. M.T. Baei, B12N12 sodalite like cage as potential sensor for hydrogen cyanide. Comput. Theor. Chem. 1024, 28–33 (2013)

    Article  CAS  Google Scholar 

  10. E. Shakerzadeh, A DFT study on the formaldehyde (H2CO and (H2CO)2) monitoring using pristine B12N12 nanocluster. Phys. E: Low-Dimens. 78, 1–9 (2016)

    Article  CAS  Google Scholar 

  11. S. Larki, E. Shakerzadeh, E.C. Anota, R. Behjatmanesh-Ardakani, The Al, Ga and Sc dopants effect on the adsorption performance of B12N12 nanocluster toward pnictogen hydrides. Chem. Phys. 526, 110424 (2019)

    Article  CAS  Google Scholar 

  12. M. Kian, E. Tazikeh-Lemeski, B12Y12 (Y: N, P) fullerene-like cages for exemestane-delivery; molecular modeling investigation. J. Mol. Struct. 1217, 128455 (2020)

    Article  CAS  Google Scholar 

  13. D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 73, 2441–2443 (1998)

    Article  CAS  Google Scholar 

  14. O. Stéphan, Y. Bando, A. Loiseau, F. Willamie, N. Shramchenko, T. Tamiya, T. Sato, Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material. Appl. Phys. A Mater. Sci. Process. 67, 107–111 (1998)

    Article  Google Scholar 

  15. T. Oku, I. Narita, A. Nishiwaki, N. Koi, Atomic structures, electronic states and hydrogen storage of boron nitride nanocage clusters. Nanotubes and Nanohorns. Defect. Diffus. Forum 226, 113–140 (2004)

    Article  Google Scholar 

  16. T. Oku, A. Nishiwaki, I. Narita, Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci. Technol. Adv. Mater. 5, 635–645 (2004)

    Article  CAS  Google Scholar 

  17. D.L. Strout, Structure and stability of boron nitrides: isomers of B12N12. J. Phys. Chem. A 104, 3364–3366 (2000)

    Article  CAS  Google Scholar 

  18. G. Seifert, R.W. Fowler, D. Mitchell, D. Porezag, T. Frauenheim, Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem. Phys. Lett. 268, 352–358 (1997)

    Article  CAS  Google Scholar 

  19. A.L.P. Silva, N.S. Sousa, J.J.G. Varela, Júnior, theoretical studies with B12N12 as a toxic gas sensor: a review. J. Nanoparticle Res. 25, 22 (2023)

    Article  CAS  Google Scholar 

  20. J. Hosseini, A. Rastgou, R. Moradi, F-encapsulated B12N12 fullerene as an anode for Li–ion batteries: a theoretical study. J. Mol. Liq. 225, 913–918 (2017)

    Article  CAS  Google Scholar 

  21. Y. Luo, K. Wang, J. Mu, Y. Cai, W. Zhu, Exploring the adsorption behavior of pyrazinamide on the surface of X12Y12 (X = B, Al; Y = N, P) nanocages: a in-silico study. J. Mol. Liq. 372, 121211 (2023)

    Article  CAS  Google Scholar 

  22. X. Yao, J. Mu, Y. Zheng, J. Wu, W. Zhu, K. Wang, Tailoring the adsorption behaviors of flucytosine on BnNn (n = 12, 16, 20, and 24) nanocage scaffolds: a computational insight on drug delivery applications. Colloids Surf. A: Physicochem. Eng. 678, 132481 (2023)

    Article  CAS  Google Scholar 

  23. Y. Zhang, Y. Luo, L. Tang, E. Mingyan, J. Hu, Unveiling regularities of B12N12-X nanocages as a drug delivery vehicle for the nitrosourea: the influence of periods and groups. J. Mol. Liq. 393, 123607 (2024)

    Article  CAS  Google Scholar 

  24. X. Hou, F. Fu, C. Bai, G. Lei, Boron nitride B11N12M+ (M = B, Al, Ga, and In) nanocages as a catalyst for CO oxidation by N2O: a density functional study. Comput. Theor. Chem. 1171, 112660 (2020)

    Article  CAS  Google Scholar 

  25. Y. Jia, Y. Nian, J. Zhang, Y. Han, Theoretical design of ruthenium single-atom catalysts with different substrates for acetylene hydrochlorination. Mol. Catal. 513, 111826 (2021)

    Article  CAS  Google Scholar 

  26. A.W. Kamran, M. Zahoor, H. Ali, S. Khan, H. Abu-Farsakh, S. Ali, Chromate ions chemisorption over the exterior surface of pristine boron nitride (B12N12) nanocage: a computational study. Inorg. Chem. Commun. 148, 110370 (2023)

    Article  Google Scholar 

  27. Y. Wang, L. Kang, Selective hydrogenation of acetylene catalysed by a B12N12 cluster doped with a single nickel atom: a DFT study. Catalysts 10, 115 (2020)

    Article  Google Scholar 

  28. F. Mamusi, D. Farmanzadeh, Mechanism of ethanol steam reforming on B12N12 and Al12N12 nano-cages: a theoretical study. Mater. Today Commun. 30, 103014 (2022)

    Article  CAS  Google Scholar 

  29. H.Y. Ammar, Kh.M. Eid, H.M. Badran, The impact of an external electric field on methanol adsorption on XB11N12 (X=B Co, Ni) nanocages: a DFT and TD-DFT study. J. Phys. Chem. Solids 153, 10033 (2021)

    Article  Google Scholar 

  30. A.L.P. Silva, J.J.G. Varela, Júnior, carbon monoxide interaction with B12N12 nanocage with and without an external electric field: a DFT study. J. Nanoparticle Res. 24, 1 (2022)

    Article  CAS  Google Scholar 

  31. M. Souri, Density functional theory study of Ni-modified B12N12 nanocages as promising nonlinear optical materials. Chem. Phys. Lett. 137, 140769 (2023)

    Article  Google Scholar 

  32. A. Soltani, M.B. Javan, Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study. RSC. Adv. 5, 90621–90631 (2015)

    Article  CAS  Google Scholar 

  33. A. Soltani, M.T. Baei, E.T. Lemeski, A.A. Pahlevani, The study of SCN adsorption on B12N12 and B16N16 nano-cages. Superlattices Microstruct. 75, 716–724 (2014)

    Article  CAS  Google Scholar 

  34. A.S. Rad, K. Ayub, O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by Nickel decoration: a comprehensive DFT study. Solid State Sci. 69, 22–30 (2017)

    Article  CAS  Google Scholar 

  35. M. Rezaei-Sameti, F. Zamanian, The NBO, AIM, MEP, thermodynamic and quantum parameters investigations of Pyrrole 2-carboxylic acid molecule adsorption on the pristine and Ni doped B12N12 nano cage. J. Phys. Theor. Chem. 16, 15–28 (2019)

    Google Scholar 

  36. M. Shakerzadeh, M. Noormohammadbeigi, HNO Detection by nanosized B12N12 Cage: a DFT/TDDFT Study. Phys. Rev. Chem. Res. 4, 693–706 (2016)

    Google Scholar 

  37. E. Shakerzadeh, E. Khodayar, S. Noorizadeh, Theoretical assessment of phosgene adsorption behavior onto pristine, Al-sand Ga-doped B12N12 and B16N16 nanoclusters. Comput. Mater. Sci. 118, 155–171 (2016)

    Article  CAS  Google Scholar 

  38. S. Ali, T. Liu, Z. Lian, B. Li, D.S. Su, The tunable effect of nitrogen and boron dopants on a single walled carbon nanotube support on the catalytic properties of a single gold atom catalyst: a first principles study of CO oxidation. J. Mater. Chem. A. 5, 16653–16662 (2017)

    Article  CAS  Google Scholar 

  39. S. Ali, R. Iqbal, A. Khan, S.U. Rehman, M. Haneef, L. Yin, Stability and catalytic performance of single-atom catalysts supported on doped and defective graphene for CO2 hydrogenation to formic acid: a first-principles study. ACS. Appl. Nano. Mater. 4, 6893–6902 (2021)

    Article  CAS  Google Scholar 

  40. S. Ali, T. Liu, Z. Lian, D.S. Su, B. Li, Density functional theory study of a graphdiyne-supported single Au Atom catalyst for highly efficient acetylene hydrochlorination. Appl. Surf. Sci. 473, 777–784 (2019)

    Article  CAS  Google Scholar 

  41. S. Ali, T. Liu, Z. Lian, D.S. Su, B. Li, Density functional theory study of a graphdiyne-supported single Au atom catalyst for highly efficient acetylene hydrochlorination. Phys. Chem. C 123, 29203–29208 (2019)

    Article  CAS  Google Scholar 

  42. S. Ali, Z. Lian, B. Li, Density functional theory study of a graphdiyne-supported single Au atom catalyst for highly efficient acetylene hydrochlorination. ACS Appl. Nano Mater. 4, 6152–6159 (2021)

    Article  CAS  Google Scholar 

  43. P.M. Ismail, S. Ali, F. Raziq, M. Bououdina, H. Abu-Farsakh, P. Xia, X. Wu, H. Xiao, S. Ali, L. Qiao, Stable and robust single transition metal atom catalyst for CO2 reduction supported on defective WS2. Appl. Surf. Sci. 624, 157073 (2023)

    Article  CAS  Google Scholar 

  44. S. Ali, Z. Xie, H. Xu, Stability and catalytic performance of single-atom supported on Ti2CO2 for low-temperature CO oxidation: a first-principles study. ChemPhysChem 22, 2352 (2021)

    Article  CAS  PubMed  Google Scholar 

  45. S. Ali, G. Yasin, R. Iqbal, X. Huang, J. Su, S. Ibraheem, Z. Zhang, X. Wu, F. Wahid, P.M. Ismail, L. Qiao, H. Xu, Porous aza-doped graphene-analogous 2D material a unique catalyst for CO2 conversion to formic-acid by hydrogenation and electroreduction approaches. Mol. Catal. 524, 112285 (2022)

    Article  CAS  Google Scholar 

  46. G. Yasin, S. Ali, S. Ibraheem, A. Kumar, M. Tabish, M.A. Mushtaq, S. Ajmal, M. Arif, M.A. Khan, A. Saad, L. Qiao, W. Zhao, Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic Iron/Cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable Zinc-Air batteries. ACS. Catal. 13, 2313–2325 (2023)

    Article  CAS  Google Scholar 

  47. N.S. Sousa, R.B. Lima, A.L.P. Silva, A.A. Tanaka, A.B.F. Silva, J.J.G. Varela, Júnior, theoretical study of dibenzotetraaza[14]annulene complexes with first row transition metals. Comput. Theor. Chem. 1054, 93–99 (2015)

    Article  Google Scholar 

  48. M.T. Baei, Z. Bagheri, A.A. Peyghan, Transition metal atom adsorptions on a boron nitride nanocage. Struct. Chem. 24, 1039–1044 (2013)

    Article  CAS  Google Scholar 

  49. A.M.F. Costa, T.S. Silva, L.B.C. Oh, D.H. Pereira, Interaction of Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, and Cr3+ metal ions on B12N12 fullerene-like cages: a theoretical study. Monatsh. Chem. 152, 915–922 (2021)

    Article  CAS  Google Scholar 

  50. J. Wang, L. Ma, J. Zhao, B. Wang, G. Wang, Stability and magnetic properties of transition metal atoms endohedral BnNn (n = 12–28) cages. J. Chem. Phys. 128, 084306 (2008)

    Article  PubMed  Google Scholar 

  51. Y. Arshad, M. Asghar, M. Yar, T. Bibi, K. Ayub, Transition metal doped boron nitride nanocages as high performance nonlinear optical materials: a DFT Study. J. Inorg. Organomet. Polym. Mater. 33, 943–955 (2023)

    Article  CAS  Google Scholar 

  52. F. Neese, The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012)

    Article  CAS  Google Scholar 

  53. F. Neese, Software update: the ORCA program system,version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018)

    Article  Google Scholar 

  54. F. Neese, Software update: the ORCA program system-Version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022)

    Article  Google Scholar 

  55. S. Grimme, Density functional theory with london dispersion corrections. WIREs Comput. Mol. Sci. 1, 211–228 (2011)

    Article  CAS  Google Scholar 

  56. E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, A. Bekhradnia, The Hartree-Fock exchange effect on the CO adsorption by the boron nitride nanocage. Phys. E: Low-Dimens. 87, 308–311 (2017)

    Article  CAS  Google Scholar 

  57. I. Benjamin, H. Louis, G.A. Okon, S.W. Qader, L.E. Afahanam, C.F. Fidelis, E.A. Eno, E.E. Ejiofor, A.-L.E. Manicum, Transition metal-decorated B12N12–X (X = Au, Cu, Ni, Os, Pt, and Zn) nanoclusters as biosensors for carboplatin. ACS. Omega. 8, 10006–10021 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. H. Farrokhpour, H. Jouypazadeh, S.V. Sohroforouzani, Interaction of diferent types of nanocages (Al12N12, Al12P12, B12N12, Be12O12, Mg12O12, Si12C12 and C24) with HCN and ClCN: DFT, TD-DFT, QTAIM, and NBO calculations. Mol. Phys. 118, e1626506 (2020)

    Article  Google Scholar 

  59. E. Shakerzadeh, H. Mirzavand, Z. Mahdavifar, A comparative DFT study on prospective application of C24, Si12C12, B12N12, B12P12, Al12N12, and Al12P12 nanoclusters as suitable anode materials for magnesium-ion batteries (MIBs). Phys. E: Low-Dimens. 87, 308–311 (2017)

    Google Scholar 

  60. P. Dhali, A.K.M.A. Hossain, Investigating the adsorption potential and sensitivity of pristine along with carbon, boron, and nitrogen substituted hetero-nanocages towards azacitidine drug. J. Mol. Liq. 396, 124051 (2024)

    Article  CAS  Google Scholar 

  61. N.S. Sousa, A.L.P. Silva, A.C.A. Silva, J.J.G. Varela, Júnior, Cu-modified B12N12 nanocage as a chemical sensor for nitrogen monoxide gas: a density functional theory study. J. Nanoparticle Res. 25, 248 (2023)

    Article  Google Scholar 

  62. A.L.P. Silva, J.J.G. Varela, Júnior, density functional theory study of Cu-modified B12N12 nanocage as a chemical sensor for carbon monoxide Gas. Inorg. Chem. 62, 1926–1934 (2023)

    Article  Google Scholar 

  63. SUd.D. Shamim, M.H. Miah, Md.R. Hossain, Md.M. Hasan, Md.K. Hossain, Md.A. Hossain, F. Ahmed, Theoretical investigation of emodin conjugated doped B12N12 nanocage by means of DFT, QTAIM and PCM analysis. Phys. E: Low-Dimens. 136, 115027 (2022)

    Article  CAS  Google Scholar 

  64. M.R. Hossain, M.M. Hasan, M. Nishat, F. Ahmed, T. Ferdous, M.A. Hossain, DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. J. Mol. Liq. 323, 114627 (2021)

    Article  CAS  Google Scholar 

  65. M.T. Baei, M.R. Taghartapeh, E.T. Lemeski, A. Soltani, A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages. Phys. E: Low-Dimens. 444, 6–13 (2014)

    CAS  Google Scholar 

  66. T. Koopmans, Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1, 104–113 (1993)

    Article  Google Scholar 

  67. R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. U.S.A. 83, 8440–8441 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. R.G. Pearson, The principle of maximum hardness. Acc. Chem. Res. 26, 250–255 (1993)

    Article  CAS  Google Scholar 

  69. R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

  70. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 29, 580–592 (2012)

    Article  Google Scholar 

  71. A.L.P. Silva, A.C.A. Silva, C.N. Navis, J.J.G. Varela, Júnior, Theoretical study of putrescine and X12Y12 (X=Al, B and Y=N, P) nanocage interactions. J. Nanoparticle Res. 23, 108 (2021)

    Article  CAS  Google Scholar 

  72. A. Escobedo-Morales, L. Tepech-Carrillo, A. Bautista-Hernández, J.H. Camacho-García, D. Cortes-Arriagada, E. Chigo-Anota, Effect of Chemical Order in the Structural Stability and Physicochemical Properties of B12N12 Fullerenes. Sci. Rep. 9, 16521 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  73. A.S. Rad, K. Ayub, A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J. Alloys Compd. 672, 161–169 (2016)

    Article  Google Scholar 

  74. H.Y. Ammar, H.M. Badran, Kh.M. Eid, TM-doped B12N12 nano-cage (TM = Mn, Fe) as a sensor for CO, NO, and NH3 gases: a DFT and TD-DFT study. Mater. Today Commun. 25, 101681 (2020)

    Article  CAS  Google Scholar 

  75. H.M. Badran, Kh.M. Eid, H.Y. Ammar, A DFT study on the effect of the external electric field on ammonia interaction with boron nitride nano-cage. J. Phys. Chem. Solids 141, 109399 (2020)

    Article  CAS  Google Scholar 

  76. D.C. Ghosh, R. Biswas, Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii. Int. J. Mol. Sci. 3, 87–113 (2002)

    Article  CAS  Google Scholar 

  77. H.Y. Ammar, Kh.M. Eid, H.M. Badran, Interaction and detection of formaldehyde on pristine and doped boron nitride nano-cage: DFT calculations. Mater. Today Commun. 25, 101408 (2020)

    Article  CAS  Google Scholar 

  78. A.L.P. Silva, A.C.A. Silva, J.J.G. Varela, Júnior, Putrescine adsorption on pristine and Cu-decorated B12N12 nanocages: a density functional theory study. Comput. Theor. Chem. 1215, 113836 (2022)

    Article  CAS  Google Scholar 

  79. S. Hussain, R. Hussain, M.Y. Mehboob, S.A.S. Chatha, A.I. Hussain, A. Umar, M.U. Khan, M. Ahmed, M. Adnan, K. Ayub, Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT study. ACS. Omega. 5, 7641–7650 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. M.R.S.A. Janjua, Prediction and understanding: quantum chemical framework of transition metals enclosed in a b12n12 inorganic nanocluster for adsorption and removal of DDT from the environment. Inorg. Chem. 60, 10837–10847 (2021)

    Article  CAS  PubMed  Google Scholar 

  81. R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)

    Article  CAS  Google Scholar 

  82. F. De Proft, S. Liu, R.G. Parr, Chemical potential, hardness, hardness and softness kernel and local hardness in the isomorphic ensemble of density functional theory. J. Chem. Phys. 107, 3000–3006 (1997)

    Article  Google Scholar 

  83. A. Veved, G.W. Ejuh, N. Djongyang, Study of the chemical softness, chemical hardness, chemical stability and interaction energy of the piezoelectric composite: (−CH2−CF2−)3/nHfO2. Polym. Bull. 78, 4977–4986 (2021)

    Article  CAS  Google Scholar 

  84. R. Sarkar, T.K. Kundu, Density functional theory studies on PVDF/ionic liquid composite systems. J. Chem. Sci. 130, 115 (2018)

    Article  Google Scholar 

  85. A.L. Silva, J.D. Varela Júnior, MB11N12 (M= Fe–Zn) nanocages for cyanogen chloride detection: a DFT Study. J. Inorg. Organomet. Polym. Mater. 34(1), 302–12 (2024)

    Article  CAS  Google Scholar 

  86. A.S. Rad, K. Ayub, Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel. Int. J. Hydrogen Energy 41, 22182–22191 (2016)

    Article  CAS  Google Scholar 

  87. A.L. Silva, L.F. de Almeida, A.L. Marques, J.D. Varela Jr., A.A. Tanaka, A.B. da Silva, CO bonding in FeN4 complexes and the effect of the macrocycle ligand: a DFT study. Polyhedron 8(67), 36–43 (2014)

    Article  Google Scholar 

  88. A.L.P. Silva, L.F. Almeida, A.L.B. Marques, H.R. Costa, A.A. Tanaka, A.B.F. Silva, J.J.G. Varela, Júnior, Quantum chemical DFT study of the interaction between molecular oxygen and FeN4 complexes, and effect of the macrocyclic ligand. J. Mol. Model. 20, 2131 (2014)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—grant No. 88887.472618/2019-00-PROCAD-AM).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Natanael de S. Sousa: Methodology, Data curation, Investigation, Formal analysis, Writing—original draft. Adilson L. P. Silva: Formal analysis, Writing—original draft, Writing—review & editing. Augusto César Azevedo Silva: Formal analysis, Writing—original draft. Jaldyr de J. G. Varela Júnior: Conceptualization, Supervision, Resources, Funding acquisition, Writing—review & editing.

Corresponding authors

Correspondence to Adilson Luís Pereira Silva or Jaldyr de Jesus Gomes Varela Júnior.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2826 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Sousa Sousa, N., Silva, A.L.P., Silva, A.C.A. et al. DFT Analysis of Structural, Energetic and Electronic Properties of Doped, Encapsulated, and Decorated First-Row Transition Metals on B12N12 Nanocage: Part 1. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03071-x

Keywords

Navigation