Skip to main content
Log in

Identifying Diffuse Glioma Subtypes Based on Pathway Enrichment Evaluation

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Gliomas are highly heterogeneous in molecular, histology, and microenvironment. However, a classification of gliomas by integrating different tumor microenvironment (TME) components remains unexplored. Based on the enrichment scores of 17 pathways involved in immune, stromal, DNA repair, and nervous system signatures in diffuse gliomas, we performed consensus clustering to uncover novel subtypes of gliomas. Consistently in three glioma datasets (TCGA-glioma, CGGA325, and CGGA301), we identified three subtypes: Stromal-enriched (Str-G), Nerve-enriched (Ner-G), and mixed (Mix-G). Ner-G was charactered by low immune infiltration levels, stromal contents, tumor mutation burden, copy number alterations, DNA repair activity, cell proliferation, epithelial-mesenchymal transformation, stemness, intratumor heterogeneity, androgen receptor expression and EGFR, PTEN, NF1 and MUC16 mutation rates, while high enrichment of neurons and nervous system pathways, and high tumor purity, estrogen receptor expression, IDH1 and CIC mutation rates, temozolomide response rate and overall and disease-free survival rates. In contrast, Str-G displayed contrastive characteristics to Ner-G. Our analysis indicates that the heterogeneity between glioma cells and neurons is lower than that between glioma cells and immune and stromal cells. Furthermore, the abundance of neurons is positively associated with clinical outcomes in gliomas, while the enrichment of immune and stromal cells has a negative association with them. Our classification method provides new insights into the tumor biology of gliomas, as well as clinical implications for the precise management of this disease.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data associated with this study are available within the paper and its supplementary data.

References

  1. Bacolod MD, Talukdar S, Emdad L et al (2016) Immune infiltration, glioma stratification, and therapeutic implications. Transl Cancer Res 5:S652–S656. https://doi.org/10.21037/tcr.2016.10.69

    Article  CAS  PubMed  Google Scholar 

  2. Brat DJ, Verhaak RG, Al-dape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498. https://doi.org/10.1056/NEJMoa1402121

    Article  CAS  PubMed  Google Scholar 

  3. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doucette T, Rao G, Rao A et al (2013) Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol Res 1:112–122. https://doi.org/10.1158/2326-6066.CIR-13-0028

    Article  CAS  PubMed  Google Scholar 

  5. Malta TM, de Souza CF, Sabedot TS et al (2018) Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol 20:608–620. https://doi.org/10.1093/neuonc/nox183

    Article  CAS  PubMed  Google Scholar 

  6. Osswald M, Jung E, Sahm F et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98. https://doi.org/10.1038/nature16071

    Article  CAS  PubMed  Google Scholar 

  7. Bagaev A, Kotlov N, Nomie K et al (2021) Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39(845–865):e7. https://doi.org/10.1016/j.ccell.2021.04.014

    Article  CAS  Google Scholar 

  8. Feng Q, Li L, Li M et al (2020) Immunological classification of gliomas based on immunogenomic profiling. J Neuroinflammation 17:360. https://doi.org/10.1186/s12974-020-02030-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andreotti JP, Silva WN, Costa AC et al (2019) Neural stem cell niche heterogeneity. Semin Cell Dev Biol 95:42–53. https://doi.org/10.1016/j.semcdb.2019.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rosas-Ballina M, Olofsson PS, Ochani M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101. https://doi.org/10.1126/science.1209985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tong N, He Z, Ma Y et al (2021) Tumor associated macrophages, as the dominant immune cells, are an indispensable target for immunologically cold tumor-glioma therapy? Front Cell Dev Biol 9:706286. https://doi.org/10.3389/fcell.2021.706286

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jiang Y, Uhrbom L (2012) On the origin of glioma. Ups J Med Sci 117:113–121. https://doi.org/10.3109/03009734.2012.658976

    Article  PubMed  PubMed Central  Google Scholar 

  13. Del Paggio JC (2018) Immunotherapy: cancer immunotherapy and the value of cure. Nat Rev Clin Oncol 15:268–270. https://doi.org/10.1038/nrclinonc.2018.27

    Article  PubMed  Google Scholar 

  14. Antunes ARP, Scheyltjens I, Duerinck J et al (2020) Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. Elife 9:e52176. https://doi.org/10.7554/eLife.52176

    Article  CAS  Google Scholar 

  15. Tomar MS, Kumar A, Srivastava C et al (2021) Elucidating the mechanisms of temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer 1876:188616. https://doi.org/10.1016/j.bbcan.2021.188616

    Article  CAS  PubMed  Google Scholar 

  16. Yoshihara K, Shahmoradgoli M, Martinez E et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  17. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kayabolen A, Yilmaz E, Bagci-Onder T (2021) IDH mutations in glioma: double-edged sword in clinical applications? Biomedicines 9:799. https://doi.org/10.3390/biomedicines9070799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Z, Li M, Jiang Z et al (2018) A comprehensive immunologic portrait of triple-negative breast cancer. Transl Oncol 11:311–329. https://doi.org/10.1016/j.tranon.2018.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sanson M, Marie Y, Paris S et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27:4150–4154. https://doi.org/10.1200/JCO.2009.21.9832

    Article  CAS  PubMed  Google Scholar 

  21. Bunda S, Heir P, Metcalf J et al (2019) CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun 10:661. https://doi.org/10.1038/s41467-018-08087-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kupp R, Shtayer L, Tien AC et al (2016) Lineage-restricted OLIG2-RTK signaling governs the molecular subtype of glioma stem-like cells. Cell Rep 16:2838–2845. https://doi.org/10.1016/j.celrep.2016.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fadhlullah SFB, Halim NBA, Yeo JYT et al (2019) Pathogenic mutations in neurofibromin identifies a leucine-rich domain regulating glioma cell invasiveness. Oncogene 38:5367–5380. https://doi.org/10.1038/s41388-019-0809-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levi ST, Copeland AR, Nah S et al (2022) Neoantigen identification and response to adoptive cell transfer in anti-PD-1 naive and experienced patients with metastatic melanoma. Clin Cancer Res 28:3042–3052. https://doi.org/10.1158/1078-0432.CCR-21-4499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knijnenburg TA, Wang L, Zimmermann MT et al (2018) Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep 23(239–254):e6. https://doi.org/10.1016/j.celrep.2018.03.076

    Article  CAS  Google Scholar 

  26. Mermel CH, Schumacher SE, Hill B et al (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41. https://doi.org/10.1186/gb-2011-12-4-r41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hegi ME, Diserens A, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  28. Chen JC, Lee IN, Huang C et al (2019) Valproic acid-induced amphiregulin secretion confers resistance to temozolomide treatment in human glioma cells. BMC Cancer 19:756. https://doi.org/10.1186/s12885-019-5843-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fariña-Jerónimo H, de Vera A, Medina L et al (2022) Androgen receptor activity is associated with worse survival in glioblastoma. J Integr Neurosci 21:86. https://doi.org/10.31083/j.jin2103086

    Article  PubMed  Google Scholar 

  30. Youssef G, Miller JJ (2020) Lower grade gliomas. Curr Neurol Neurosci Rep 20:21. https://doi.org/10.1007/s11910-020-01040-8

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu F, Wang ZL, Wang KY et al (2020) Classification of diffuse lower-grade glioma based on immunological profiling. Mol Oncol 14:2081–2095. https://doi.org/10.1002/1878-0261.12707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luoto S, Hermelo I, Vuorinen EM et al (2018) Computational characterization of suppressive immune microenvironments in glioblastoma. Cancer Res 78:5574–5585. https://doi.org/10.1158/0008-5472.CAN-17-3714

    Article  CAS  PubMed  Google Scholar 

  34. Velpula KK, Guda MR, Sahu K et al (2017) Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma. Oncotarget 8:35639–35655. https://doi.org/10.18632/oncotarget.16767

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen TC, Chuang JY, Ko CY et al (2020) AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol 30:101413. https://doi.org/10.1016/j.redox.2019.101413

    Article  CAS  PubMed  Google Scholar 

  36. Kitange GJ, Carlson BL, Schroeder MA et al (2009) Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 11:281–291. https://doi.org/10.1215/15228517-2008-090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li M, Zhang Z, Li L et al (2020) An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Commun Biol 3:505. https://doi.org/10.1038/s42003-020-01230-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucl Acids Res 45:D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

  39. Yoav B, Yosef H (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

Download references

Funding

This work was supported by the China Pharmaceutical University (grant number 3150120001 to XW).

Author information

Authors and Affiliations

Authors

Contributions

QF performed the research, data analyses, and manuscript writing. ZD performed the research, data analyses, and manuscript editing. RN preformed data analyses and manuscript editing. XW conceived this study, designed analysis strategies, and wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaosheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Dong, Z., Nie, R. et al. Identifying Diffuse Glioma Subtypes Based on Pathway Enrichment Evaluation. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-024-00627-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-024-00627-w

Keywords

Navigation