Skip to main content
Log in

Carbon/zeolite 13X composition for atmospheric water harvesting (AWH) application in arid regions

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

To develop atmospheric water harvesting (AWH) technology, Zeolite 13X (Z) powder was hydrothermally produced with the addition of different grain sizes of carbon black additive (C) to adsorb air moisture at night and release the water adsorbed by solar irradiation during the day. Various characterization techniques were utilized, including X-ray diffractometry, Brunauer–Emmett–Teller (BET) nitrogen adsorption, field emission scanning electron microscopy (FESEM), UV‒Vis analysis, and a solar simulator, It was determined that the composition of 95%zeolite 13X-5% carbon black with a particle size of ~50 nanometers (ZC55) yielded the best result. The mentioned composition (ZC55) after one hour of exposure under a standard solar simulator flux of 1000 W/m2 by bringing the temperature of the composition to 110°C achieved the highest moisture removal in the composite. This compound evaporated 50% of the adsorbed water after one hour (0.15 g/g), from 0.31 g/g sorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and code availability

No datasets were generated or analysed during the current study.

References

  1. Mishra, B.K., et al.: Water security in a changing environment: Concept, challenges and solutions. Water 13(4), 490 (2021)

    Article  Google Scholar 

  2. Mishra, R.K.: Fresh water availability and its global challenge. Br. J. Multidiscip. Adv. Stud. 4(3), 1–78 (2023)

    Article  CAS  Google Scholar 

  3. Saleque, A.M., et al.: Natural porous materials for interfacial solar steam generation toward clean water production. Solar RRL 6(4), 2100986 (2022)

    Article  CAS  Google Scholar 

  4. Kandeal, A., et al.: Research progress on recent technologies of water harvesting from atmospheric air: A detailed review. Sustain. Energy Technol. Assess. 52, 102000 (2022)

    Google Scholar 

  5. Tu, Y., et al.: Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475 (2018)

    Article  CAS  Google Scholar 

  6. Meng, Y., Dang, Y., Suib, S.L.: Materials and devices for atmospheric water harvesting. Cell Rep. Phys. Sci. 3, 100967 (2022). https://doi.org/10.1016/j.xcrp.2022.100976

  7. Kim, S., et al.: Solar-assisted smart nanofibrous membranes for atmospheric water harvesting. Chem. Eng. J. 425, 131601 (2021)

    Article  CAS  Google Scholar 

  8. Ejeian, M., Wang, R.Z.: Adsorption-based atmospheric water harvesting. Joule 5(7), 1678–1703 (2021)

    Article  Google Scholar 

  9. LaPotin, A., et al.: Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52(6), 1588–1597 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. Bilal, M., et al.: Adsorption-based atmospheric water harvesting: A review of adsorbents and systems. Int. Commun. Heat Mass Transfer 133, 105961 (2022)

    Article  CAS  Google Scholar 

  11. Kim, H., et al.: Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9(1), 1191 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wasti, T.Z., et al.: An overview of solid and liquid materials for adsorption-based atmospheric water harvesting. Adv. Mech. Eng. 14(3), 16878132221082768 (2022)

    Article  CAS  Google Scholar 

  13. Kim, H., et al.: Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting. Int. J. Heat Mass Transfer 161, 120253 (2020)

    Article  CAS  Google Scholar 

  14. Gado, M.G., et al.: Adsorption-based atmospheric water harvesting powered by solar energy: Comprehensive review on desiccant materials and systems. Process Saf. Environ. Prot. 160, 166–183 (2022)

    Article  CAS  Google Scholar 

  15. Fosso-Kankeu, E., Al Alili, A., Mittal, H. & Mamba, B.: Atmospheric water harvesting development and challenges. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-21746-3

  16. Sadek, S., et al.: Solar-powered adsorption-based atmospheric water harvesting systems: Principles, materials, performance analysis, and configurations. Sustain. Energy Technol. Assess. 54, 102874 (2022)

    Google Scholar 

  17. Bilal, M., et al.: Investigating Adsorption-Based Atmospheric Water Harvesting Potential for Pakistan. Sustainability 14(19), 12582 (2022)

    Article  Google Scholar 

  18. Zhang, T., et al.: Surfaces with modified morphology and wettability arrangement: a potential medium for water harvesting in desertification areas. Water Supply 23(8), 2972–2985 (2023)

    Article  CAS  Google Scholar 

  19. Brambilla, A., et al.: On the applicability of atmospheric water harvesting technologies on building facades: A critical review. J. Clean. Prod. 366, 132809 (2022)

    Article  CAS  Google Scholar 

  20. Wang, J., et al.: Universal scalable sorption-based atmosphere water harvesting. Energy 165, 387–395 (2018)

    Article  Google Scholar 

  21. Uddin, M.N., et al.: Nanostructured hybrid hydrogels for solar-driven clean water harvesting from the atmosphere. Materials 15(21), 7538 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, X., Yang, H.Y.: A global challenge: clean drinking water. Glob. Chall. 5, 2000125 (2021). https://doi.org/10.1002/gch2.202000125

  23. Chang, X., et al.: Marine biomass-derived, hygroscopic and temperature-responsive hydrogel beads for atmospheric water harvesting and solar-powered irrigation. J. Mater. Chem. A 10(35), 18170–18184 (2022)

    Article  CAS  Google Scholar 

  24. Solovyeva, M., et al.: MIL-160 as an adsorbent for atmospheric water harvesting. Energies 14(12), 3586 (2021)

    Article  CAS  Google Scholar 

  25. Ahrestani, Z., Sadeghzadeh, S., Motejadded Emrooz, H.B.: An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply. RSC Adv. 13(15), 10273-10307 (2023)

  26. Kim, H., et al.: Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356(6336), 430–434 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J., et al.: Water harvesting from the atmosphere in arid areas with manganese dioxide. Environ. Sci. Technol. Lett. 7(1), 48–53 (2020)

    Article  CAS  Google Scholar 

  28. Xu, J., et al.: Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew. Chem. Int. Ed. 59(13), 5202–5210 (2020)

    Article  CAS  Google Scholar 

  29. Trapani, F., et al.: On the general water harvesting capability of metal-organic frameworks under well-defined climatic conditions. Microporous Mesoporous Mater. 230, 20–24 (2016)

    Article  CAS  Google Scholar 

  30. Loughlin, K.F.: Water isotherm models for 4A (NaA) zeolite. Adsorption 15(4), 337–353 (2009)

    Article  CAS  Google Scholar 

  31. Deng, S.: Sorbent technology. Encycl. Chem. Process. 2825–2845 (2006). https://doi.org/10.1081/E-ECHP-120007963

  32. Furukawa, H., et al.: Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136(11), 4369–4381 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Kim, H., et al.: Characterization of adsorption enthalpy of novel water-stable zeolites and metal-organic frameworks. Sci. Rep. 6(1), 19097 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanikel, N., et al.: Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 5(10), 1699–1706 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Alebeek, R., et al.: Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair. Appl. Therm. Eng. 139, 325–333 (2018)

    Article  Google Scholar 

  36. Ur Rehman, A., Maosheng, Z., Hayat, A. Water sorption studies on ZnSO4‐zeolite composite as potential thermochemical heat storage materials. Int. J. Energy Res. 44(1), 269-281 (2020)

  37. Sowunmi, A., et al.: Mixture optimization of synthesized zeolites 4A and 13X for solar adsorption refrigeration application. Int. J. Low-Carbon Technol. 17, 1177–1185 (2022)

    Article  CAS  Google Scholar 

  38. Zhang, L., et al.: Silane functionalization on zeolite 13X surface for direct steam generation in a solid sorption heat pump. Energy Convers. Manag. 244, 114457 (2021)

    Article  CAS  Google Scholar 

  39. Wynnyk, K.G., Hojjati, B., Marriott, R.A.: High-pressure sour gas and water adsorption on zeolite 13X. Ind. Eng. Che. Res. 57(45), 15357–15365 (2018)

    CAS  Google Scholar 

  40. Park, M., et al.: Thermal stabilization of extraframework Cs+ in zeolite 13X. J. Nucl. Mater. 572, 154078 (2022)

    Article  CAS  Google Scholar 

  41. Tahraoui, Z., et al.: Influence of the compensating cation nature on the water adsorption properties of zeolites. Molecules 25(4), 944 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abohamzeh, E., Frey, G.: Numerical investigation of the adsorption process of zeolite/water in a thermochemical reactor for seasonal heat storage. Energies 15(16), 5944 (2022)

    Article  CAS  Google Scholar 

  43. Loeb, S., Li, C., Kim, J.-H.: Solar photothermal disinfection using broadband-light absorbing gold nanoparticles and carbon black. Environ. Sci. Technol. 52(1), 205–213 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. Bond, T.C., Bergstrom, R.W.: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40(1), 27–67 (2006)

    Article  CAS  Google Scholar 

  45. Chan, K.C., Chao, C.Y., Wu, C.: Measurement of properties and performance prediction of the new MWCNT-embedded zeolite 13X/CaCl2 composite adsorbents. Int. J. Heat. Mass. Transfer. 89, 308–319 (2015)

    Article  CAS  Google Scholar 

  46. Mehdikhani, A., Salahi, E., Shahmoradi, J.: hydrothermal synthesis and investigation of parameters influencing moisture adsorption of zeolite 13X powder. J. Adv. Mater. Technol. 12(4), 61–72 (2023)

    Google Scholar 

  47. Treacy, M.M., Higgins, J.B.: Collection of simulated XRD powder patterns for zeolites fifth (5th) revised edition. Elsevier Sci. (2007). https://doi.org/10.1016/B978-0-444-53067-7.X5470

  48. Li, Q., et al.: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. Hu, Y., et al.: Carbon nanotubes decorated hollow metal–organic frameworks for efficient solar-driven atmospheric water harvesting. Chem. Eng. J. 430, 133086 (2022)

    Article  CAS  Google Scholar 

  50. Deng, S.: Sorbent technology. Encycl. Chem. Process. New York, 1st ed, 2825–2845 (2006). https://doi.org/10.1081/E-ECHP-120007963

  51. Liu, L., et al.: Water adsorption on carbon-A review. Adv. Colloid Interf. Sci. 250, 64–78 (2017)

    Article  CAS  Google Scholar 

  52. Dewey, C.S., Lefforge, P.K., Cabot, G.L.: Moisture sorption by carbon black. Ind. Eng. Chem. 24(9), 1045–1050 (1932)

    Article  CAS  Google Scholar 

  53. Terzis, A., et al.: High-frequency water vapor sorption cycling using fluidization of metal-organic frameworks. Cell Rep. Phys. Sci. 1(5), 100057 (2020). https://doi.org/10.1016/j.xcrp.2020.100057

Download references

Acknowledgment

We are very grateful to the Niroo Research Institute (Dr. Hesam Fallah Arani, Dr. Hossein Koohani, Dr Majid Mirzaee), Materials and Energy Research Institute (Dr. Aref Ghanbari), and Iran-carbon company for supporting this research and helping to advance it.

Author information

Authors and Affiliations

Authors

Contributions

Ali Mehdikhani: Investigation, Data curation, Conceptualization, Methodology, Writing – original draft.

Esmaeil Salahi: Supervision, Conceptualization, Methodology, Validation, Writing – review & editing.

Jahangir Shahmoradi: Validation, Writing – review & editing.

Corresponding author

Correspondence to Esmaeil Salahi.

Ethics declarations

Ethical approval

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdikhani, A., Salahi, E. & Shahmoradi, J. Carbon/zeolite 13X composition for atmospheric water harvesting (AWH) application in arid regions. Adsorption (2024). https://doi.org/10.1007/s10450-024-00476-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00476-5

Keywords

Navigation