Skip to main content
Log in

Thioglycolic acid capped CdSe/ZnS quantum dot as fluorescent sensor for the detection of water-soluble hazardous heavy metal ions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, we have developed a rapid, cost-effective aqueous phase route to synthesize water-soluble Thioglycolic acid (TGA) capped CdSe/ZnS (CdSe/ZnS + TGA) QD sensor. Synthesized QD sensor has been successfully validated its candidature for the efficient detection of hazardous heavy metal ions (Xn+) specifically chromium (Cr3+) and copper (Cu2+) in aqueous medium. In the presence of Xn+ metal ions, ‘‘Turn-Off’’ fluorescence response is observed due to the complex formation (Xn+: CdSe/ZnS + TGA). A strong 1:1 complexation (Xn+: CdSe/ZnS + TGA) between QD sensor and Xn+ metal ion is confirmed by the output of Benesi–Hildebrand relation and Job’s plot. As per our knowledge our proposed CdSe/ZnS + TGA QD sensor has established its efficient sensing capability for metal ions with lower detection of limit (LOD) up to concentration ~ 10–7 M for the first time which is lower than permissible limit as per WHO data. The practical application of this system for determining metal ions in real samples has also been successfully demonstrated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J.A. Cotruvo, WHO guidelines for drinking water quality: first addendum to the fourth edition. J. Am. Water Works Assoc. 109(7), 44–51 (2017)

    Article  Google Scholar 

  2. D. Sanchez-Rodas, W. Corns, B. Chen, P. Stockwell, Atomic fluorescence spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J. Anal. At. Spectrom. 25(7), 933–946 (2010). https://doi.org/10.1039/B917755H

    Article  Google Scholar 

  3. S. Wu, N.C. Sekar, S.N. Tan, H. Xie, S.H. Ng, Determination of chromium (III) by differential pulse stripping voltammetry at a chitosan–gold nanocomposite modified screen printed electrode. Anal. Methods 8(5), 962–967 (2016). https://doi.org/10.1039/C5AY03291A

    Article  Google Scholar 

  4. K. Chullasat, P. Nurerk, P. Kanatharana, F. Davis, O. Bunkoed, A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection. Sens. Actuators B Chem. 254, 255–263 (2018). https://doi.org/10.1016/j.snb.2017.07.062

    Article  Google Scholar 

  5. M. Ishikawa, V. Biju, Luminescent quantum dots, making invisibles visible in bioimaging. Prog. Mol. Biol. Transl. Sci. 104, 53–99 (2011). https://doi.org/10.1016/B978-0-12-416020-0.00002-4

    Article  Google Scholar 

  6. P. Chowdhury, Functionalized CdTe fluorescence nanosensor for the sensitive detection of water borne environmentally hazardous metal ions. Opt. Mater. 111, 110584 (2021). https://doi.org/10.1016/j.optmat.2020.110584

    Article  Google Scholar 

  7. M. Rana, P. Chowdhury, L-glutathione capped CdSeS/ZnS quantum dot sensor for the detection of environmentally hazardous metal ions. J. Lumin. 206, 105–112 (2019). https://doi.org/10.1016/j.jlumin.2018.10.060

    Article  Google Scholar 

  8. M. Rana, A. Jain, V. Rani, P. Chowdhury, Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorg. Chem. Commun. 112, 107723 (2020). https://doi.org/10.1016/j.inoche.2019.107723

    Article  Google Scholar 

  9. N. Beloglazova, P. Shmelin, E. Speranskaya, B. Lucas, C. Helmbrecht, D. Knopp, R. Niessner, S. De Saeger, I.Y. Goryacheva, Quantum dot loaded liposomes as fluorescent labels for immunoassay. Anal. Chem. 85(15), 7197–7204 (2013). https://doi.org/10.1021/ac401729y

    Article  Google Scholar 

  10. Z. Hu, R. Xia, S. Kais, A quantum algorithm for evolving open quantum dynamics on quantum computing devices. Sci. Rep. 10(1), 3301 (2020). https://doi.org/10.1038/s41598-020-60321-x

    Article  ADS  Google Scholar 

  11. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Sol. Energy 88, 137–143 (2013). https://doi.org/10.1016/j.solener.2012.11.005

    Article  ADS  Google Scholar 

  12. M. Rana, P. Chowdhury, Studies on size dependent structures and optical properties of CdSeS clusters. J. Cluster Sci. 31, 1111–1121 (2020). https://doi.org/10.1007/s10876-019-01719-0

    Article  Google Scholar 

  13. M.A. Malik, P. O’Brien, N. Revaprasadu, A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem. Mater. 14(5), 2004–2010 (2002). https://doi.org/10.1021/cm011154w

    Article  Google Scholar 

  14. R. Freeman, T. Finder, I. Willner, Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew. Chem. 121(42), 7958–7961 (2009). https://doi.org/10.1002/ange.200902395

    Article  ADS  Google Scholar 

  15. X. Sun, X. Huang, J. Guo, W. Zhu, Y. Ding, G. Niu, A. Wang, D.O. Kiesewetter, Z.L. Wang, S. Sun, Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J. Am. Chem. Soc. 136(5), 1706–1709 (2014). https://doi.org/10.1021/ja410438n

    Article  Google Scholar 

  16. B. Suo, X. Su, J. Wu, D. Chen, A. Wang, Z. Guo, Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: fabrication, characterization and optical properties. Mater. Chem. Phys. 119(1–2), 237–242 (2010). https://doi.org/10.1016/j.matchemphys.2009.08.054

    Article  Google Scholar 

  17. E. Oh, R. Liu, A. Nel, K.B. Gemill, M. Bilal, Y. Cohen, I.L. Medintz, Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol. 11(5), 479–486 (2016). https://doi.org/10.1038/nnano.2015.338

    Article  ADS  Google Scholar 

  18. S.S. Talmage, Environmental and human safety of major surfactants: alcohol ethoxylates and alkylphenol ethoxylates, 1st edn. (CRC Press, Boca Raton, 2020). https://doi.org/10.1201/9780138757199

    Book  Google Scholar 

  19. W.E. Mahmoud, A.M. Al-Amri, S. Yaghmour, Low temperature synthesis of CdSe capped 2-mercaptoethanol quantum dots. Opt. Mater. 34(7), 1082–1086 (2012). https://doi.org/10.1016/j.optmat.2012.01.001

    Article  ADS  Google Scholar 

  20. X. Wei, M. Meng, Z. Song, L. Gao, H. Li, J. Dai, Z. Zhou, C. Li, J. Pan, P. Yu, Synthesis of molecularly imprinted silica nanospheres embedded mercaptosuccinic acid-coated CdTe quantum dots for selective recognition of λ-cyhalothrin. J. Lumin. 153, 326–332 (2014). https://doi.org/10.1016/j.jlumin.2014.03.055

    Article  Google Scholar 

  21. H.F. Wu, J. Gopal, H.N. Abdelhamid, N. Hasan, Quantum dot applications endowing novelty to analytical proteomics. Proteomics 12(19–20), 2949–2961 (2012). https://doi.org/10.1002/pmic.201200295

    Article  Google Scholar 

  22. H.N. Abdelhamid, H.-F. Wu, Selective biosensing of Staphylococcus aureus using chitosan quantum dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 188, 50–56 (2018). https://doi.org/10.1016/j.saa.2017.06.047

    Article  ADS  Google Scholar 

  23. P. Diwan, A. Bharadwaj, Nanomedicine (Pentagon Press, Shahpur Jat, 2006)

    Google Scholar 

  24. S. Subramanian, S. Ganapathy, M. Rajaram, A. Ayyaswamy, Tuning the optical properties of colloidal quantum dots using thiol group capping agents and its comparison. Mater. Chem. Phys. 249, 123127 (2020). https://doi.org/10.1016/j.matchemphys.2020.123127

    Article  Google Scholar 

  25. L. Guerrini, R.A. Alvarez-Puebla, N. Pazos-Perez, Surface modifications of nanoparticles for stability in biological fluids. Materials 11(7), 1154 (2018). https://doi.org/10.3390/ma11071154

    Article  ADS  Google Scholar 

  26. G. Jocelin, A. Arivarasan, M. Ganesan, N.R. Prasad, G. Sasikala, Synthesis of colloidal quantum dots coated with mercaptosuccinic acid for early detection and therapeutics of oral cancers. Int. J. Nanosci. 15(04), 1650015 (2016). https://doi.org/10.1142/S0219581X16500150

    Article  Google Scholar 

  27. P. Yadav, P. Chowdhury, Optical efficiency of CdTe QDs for metal ion sensing in the presence of different thiol-based capping agents. Chem. Pap. (2022). https://doi.org/10.1007/s11696-021-01991-3

    Article  Google Scholar 

  28. L. Li, Y. Lu, Y. Ding, F. Zhang, Y. Wang, Facile aqueous synthesis of functionalized CdTe nanoparticles and their application as fluorescence probes for determination of adenine and guanine. Can. J. Chem. 90(2), 173–179 (2012). https://doi.org/10.1139/v11-144

    Article  Google Scholar 

  29. P. Dagtepe, V. Chikan, J. Jasinski, V.J. Leppert, Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J. Phys. Chem. C 111(41), 14977–14983 (2007). https://doi.org/10.1021/jp072516b

    Article  Google Scholar 

  30. L. Spanhel, M. Haase, H. Weller, A. Henglein, Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 109(19), 5649–5655 (1987). https://doi.org/10.1021/ja00253a015

    Article  Google Scholar 

  31. S. Sharma, P. Chowdhury, Fluorescence signal from carbon quantum dots synthesized from natural resources. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.05.676

    Article  Google Scholar 

  32. R. Snyder, S. Hsu, S. Krimm, Vibrational spectra in the C H stretching region and the structure of the polymethylene chain. Spectrochim. Acta A Mol. Biomol. Spectrosc. 34(4), 395–406 (1978). https://doi.org/10.1016/0584-8539(78)80167-6

    Article  ADS  Google Scholar 

  33. M.S. Abd El-Sadek, J. Ram Kumar, S. Moorthy Babu, Optical properties of thiol-stabilised CdTe nanoparticles. Int. J. Nanopart. 2(1–6), 20–29 (2009). https://doi.org/10.1504/IJNP.2009.028730

    Article  Google Scholar 

  34. M. Pal, N. Mathews, P. Santiago, X. Mathew, A facile one-pot synthesis of highly luminescent CdS nanoparticles using thioglycerol as capping agent. J. Nanopart. Res. 14, 1–13 (2012). https://doi.org/10.1007/s11051-012-0916-3

    Article  Google Scholar 

  35. C.Y. Huang, Enzyme kinetics and mechanism—part c: intermediates, stereochemistry, and rate studies. Meth. Enzymol. 87, 509–525 (1982). https://doi.org/10.1016/s0076-6879(82)87029-8

    Article  Google Scholar 

  36. H.A. Benesi, J. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71(8), 2703–2707 (1949). https://doi.org/10.1021/ja01176a030

    Article  Google Scholar 

  37. Y. Ding, S.Z. Shen, H. Sun, K. Sun, F. Liu, Synthesis of L-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions. Sens. Actuators B Chem. 203, 35–43 (2014). https://doi.org/10.1016/j.snb.2014.06.054

    Article  Google Scholar 

  38. M. Koneswaran, R. Narayanaswamy, RETRACTED: l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens. Actuators B Chem. 131(1), 104–109 (2009). https://doi.org/10.1016/j.snb.2008.09.028

    Article  Google Scholar 

  39. T. Han, H. Kang, S. Ye, Y. Yuan, Y. Zhang, L. Dong, Ultra-stable fluorescent film sensor based on quantum dots for the real-time detection of Cu2+. Sci. Total. Environ. 746, 141412 (2020). https://doi.org/10.1016/j.scitotenv.2020.141412

    Article  ADS  Google Scholar 

  40. S. Chaudhary, S. Kumar, B. Kaur, S. Mehta, Potential prospects for carbon dots as a fluorescence sensing probe for metal ions. RSC Adv. 6(93), 90526–90536 (2016). https://doi.org/10.1039/C6RA15691F

    Article  ADS  Google Scholar 

  41. S.K. Raj, A. Rajput, H. Gupta, R. Patidar, V. Kulshrestha, Selective recognition of Fe3+ and Cr3+ in aqueous medium via fluorescence quenching of graphene quantum dots. J Dispers Sci. Technol. 40(2), 250–255 (2019). https://doi.org/10.1080/01932691.2018.1467775

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Shruti Sharma: data curation, visualization, investigation, software, validation, writing—reviewing and editing. Pooja Yadav: writing—original draft preparation, data curation visualization, investigation, writing—reviewing and editing. Papia Chowdhury: conceptualization, software, methodology, supervision.

Corresponding author

Correspondence to Papia Chowdhury.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Yadav, P. & Chowdhury, P. Thioglycolic acid capped CdSe/ZnS quantum dot as fluorescent sensor for the detection of water-soluble hazardous heavy metal ions. Appl. Phys. A 130, 326 (2024). https://doi.org/10.1007/s00339-024-07491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07491-x

Keywords

Navigation