Skip to main content
Log in

Efficient nitrate electroreduction over Mn-doped Cu catalyst via regulating N-containing intermediates adsorption configuration

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical reduction of NO3 to NH3 holds promise for economic and environmental benefits, presenting an energy-efficient alternative to the traditional Haber–Bosch method. However, challenges exist due to its sluggish kinetics, multiple intermediates, and various reaction pathways. In this study, Mn-doped-Cu catalyst was synthesized and employed for electrochemical NO3-to-NH3 conversion. The doping of Mn into Cu resulted in exceptional performance, achieving a FE of 95.8% and an NH3 yield rate of 0.91 mol g−1 h−1 at −0.6 V in a neutral electrolyte at low NO3 concentration. Detailed experimental studies and theoretical calculations revealed that the Mn dopant enhanced the kinetic rate of NO2-to-NH3 and induced a distinct configuration of *NO. This alteration decreased the energy barrier of *NO-to-*NOH, consequently promoting the conversion of NO3-to-NH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhou J, Xiong Y, Sun M, Xu Z, Wang Y, Lu P, Liu F, Hao F, Feng T, Ma Y, Yin J, Ye C, Chen B, Xi S, Zhu Y, Huang B, Fan Z. Proc Natl Acad Sci USA, 2023, 120: e2311149120

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Zhang P, Lin X, Zhang G, Gao H, Wang Q, Zhao ZJ, Wang T, Gong J. Sci China Chem, 2023, 66: 913–922

    Google Scholar 

  3. Wang Y, Sun M, Zhou J, Xiong Y, Zhang Q, Ye C, Wang X, Lu P, Feng T, Hao F, Liu F, Wang J, Ma Y, Yin J, Chu S, Gu L, Huang B, Fan Z. Proc Natl Acad Sci USA, 2023, 120: e2306461120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yue F, Wang C, Duan W, Pang H, Wei T, Xue K, Wang D, Fu F, Yang C. Sci China Chem, 2023, 66: 2109–2120

    Article  CAS  Google Scholar 

  5. Wang Y, Hao F, Sun M, Liu MT, Zhou J, Xiong Y, Ye C, Wang X, Liu F, Wang J, Lu P, Ma Y, Yin J, Chen HM, Zhang Q, Gu L, Chen HM, Huang B, Fan Z. Adv Mater, 2024, 36: 2313548

    Article  CAS  Google Scholar 

  6. Wang Y, Liu C, Zhang B, Yu Y. Sci China Mater, 2020, 63: 2530–2538

    Article  CAS  Google Scholar 

  7. Chen GF, Yuan Y, Jiang H, Ren SY, Ding LX, Ma L, Wu T, Lu J, Wang H. Nat Energy, 2020, 5: 605–613

    Article  CAS  Google Scholar 

  8. Zhong Y, Xiong H, Low J, Long R, Xiong Y. eScience, 2023, 3: 100086

    Article  Google Scholar 

  9. Jiang H, Chen GF, Wang H. Sci China Chem, 2024, 67: 319–320

    Article  CAS  Google Scholar 

  10. Xu H, Chen J, Zhang Z, Hung C-, Yang J, Li W. Adv Mater, 2023, 35: 2207522

    Article  CAS  Google Scholar 

  11. Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Adv Mater, 2023, 36: 2304021

    Article  Google Scholar 

  12. Wu L, Guo W, Sun X, Han B. Pure Appl Chem, 2021, 93: 777–797

    Article  CAS  Google Scholar 

  13. Wu L, Feng J, Zhang L, Jia S, Song X, Zhu Q, Kang X, Xing X, Sun X, Han B. Angew Chem Int Ed, 2023, 62: e202307952

    Article  CAS  Google Scholar 

  14. Wang Y, Xu A, Wang Z, Huang L, Li J, Li F, Wicks J, Luo M, Nam DH, Tan CS, Ding Y, Wu J, Lum Y, Dinh CT, Sinton D, Zheng G, Sargent EH. J Am Chem Soc, 2020, 142: 5702–5708

    Article  CAS  PubMed  Google Scholar 

  15. Jiang H, Chen GF, Savateev O, Xue J, Ding LX, Liang Z, Antonietti M, Wang H. Angew Chem Int Ed, 2023, 62: e202218717

    Article  CAS  Google Scholar 

  16. Han S, Li H, Li T, Chen F, Yang R, Yu Y, Zhang B. Nat Catal, 2023, 6: 402–414

    Article  CAS  Google Scholar 

  17. Sun F, Gao Y, Li M, Wen Y, Fang Y, Meyer TJ, Shan B. J Am Chem Soc, 2023, 145: 21491–21501

    Article  CAS  PubMed  Google Scholar 

  18. Min X, Liu B. Small, 2023, 19: 2300794

    Article  CAS  Google Scholar 

  19. Zhang G, Li X, Chen K, Guo Y, Ma D, Chu K. Angew Chem Int Ed, 2023, 62: e202300054

    Article  CAS  Google Scholar 

  20. He W, Zhang J, Dieckhöfer S, Varhade S, Brix AC, Lielpetere A, Seisel S, Junqueira JRC, Schuhmann W. Nat Commun, 2022, 13: 1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li P, Li R, Liu Y, Xie M, Jin Z, Yu G. J Am Chem Soc, 2023, 145: 6471–6479

    Article  CAS  PubMed  Google Scholar 

  22. Niu H, Zhang Z, Wang X, Wan X, Shao C, Guo Y. Adv Funct Mater, 2021, 31: 2008533

    Article  CAS  Google Scholar 

  23. Huang Y, He C, Cheng C, Han S, He M, Wang Y, Meng N, Zhang B, Lu Q, Yu Y. Nat Commun, 2023, 14: 7368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia S, Wu L, Liu H, Wang R, Sun X, Han B. Angew Chem Int Ed, 2024, 63: e202400033

    Article  CAS  Google Scholar 

  25. Fang JY, Zheng QZ, Lou YY, Zhao KM, Hu SN, Li G, Akdim O, Huang XY, Sun SG. Nat Commun, 2022, 13: 7899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo W, Zhang S, Zhang J, Wu H, Ma Y, Song Y, Cheng L, Chang L, Li G, Liu Y, Wei G, Gan L, Zhu M, Xi S, Wang X, Yakobson BI, Tang BZ, Ye R. Nat Commun, 2023, 14: 7383

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu L, Zhang L, Liu S, Feng J, Xu L, Tan X, Ma X, Sun X. J Mater Chem A, 2023, 11: 5520–5526

    Article  CAS  Google Scholar 

  28. Daiyan R, Tran-Phu T, Kumar P, Iputera K, Tong Z, Leverett J, Khan MHA, Esmailpour AA, Jalili A, Lim M, Tricoli A, Liu RS, Lu X, Lovell E, Amal R. Energy Environ Sci, 2021, 14: 3588–3598

    Article  CAS  Google Scholar 

  29. Zhu W, Yao F, Wu Q, Jiang Q, Wang J, Wang Z, Liang H. Energy Environ Sci, 2023, 16: 2483–2493

    Article  CAS  Google Scholar 

  30. Wang K, Liu D, Liu L, Liu J, Hu XF, Li P, Li M, Vasenko AS, Xiao C, Ding S. eScience, 2022, 2: 518–528

    Article  CAS  Google Scholar 

  31. Liu Q, Xie L, Liang J, Ren Y, Wang Y, Zhang L, Yue L, Li T, Luo Y, Li N, Tang B, Liu Y, Gao S, Alshehri AA, Shakir I, Agboola PO, Kong Q, Wang Q, Ma D, Sun X. Small, 2022, 18: e2106961

    Article  PubMed  Google Scholar 

  32. Feng J, Wu L, Liu S, Xu L, Song X, Zhang L, Zhu Q, Kang X, Sun X, Han B. J Am Chem Soc, 2023, 145: 9857–9866

    Article  CAS  PubMed  Google Scholar 

  33. Fu Y, Wang S, Wang Y, Wei P, Shao J, Liu T, Wang G, Bao X. Angew Chem Int Ed, 2023, 62: e202303327

    Article  CAS  Google Scholar 

  34. Feng J, Zhang L, Liu S, Xu L, Ma X, Tan X, Wu L, Qian Q, Wu T, Zhang J, Sun X, Han B. Nat Commun, 2023, 14: 4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao W, Xie K, Xie J, Wang X, Zhang H, Chen S, Wang H, Li Z, Li C. Adv Mater, 2023, 35: 2202952

    Article  CAS  Google Scholar 

  36. Du C, Lu S, Wang J, Wang X, Wang M, Fruehwald HM, Wang L, Zhang B, Guo T, Mills JP, Wei W, Chen Z, Teng Y, Zhang J, Sun CJ, Zhou H, Smith RDL, Kendall B, Henkelman G, Wu YA. ACS Catal, 2023, 13: 10560–10569

    Article  CAS  Google Scholar 

  37. Yang J, Qi H, Li A, Liu X, Yang X, Zhang S, Zhao Q, Jiang Q, Su Y, Zhang L, Li JF, Tian ZQ, Liu W, Wang A, Zhang T. J Am Chem Soc, 2022, 144: 12062–12071

    Article  CAS  PubMed  Google Scholar 

  38. Zhang S, Wu J, Zheng M, Jin X, Shen Z, Li Z, Wang Y, Wang Q, Wang X, Wei H, Zhang J, Wang P, Zhang S, Yu L, Dong L, Zhu Q, Zhang H, Lu J. Nat Commun, 2023, 14: 3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang M, Lu M, Yang MY, Liao JP, Liu YF, Yan HJ, Chang JN, Yu TY, Li SL, Lan YQ. eScience, 2023, 3: 100116

    Article  Google Scholar 

  40. Xu L, Ma X, Wu L, Tan X, Song X, Zhu Q, Chen C, Qian Q, Liu Z, Sun X, Liu S, Han B. Angew Chem Int Ed, 2022, 61: e202210375

    Article  CAS  Google Scholar 

  41. Zhu T, Chen Q, Liao P, Duan W, Liang S, Yan Z, Feng C. Small, 2020, 16: 2004526

    Article  CAS  Google Scholar 

  42. Wang Y, Wang C, Li M, Yu Y, Zhang B. Chem Soc Rev, 2021, 50: 6720–6733

    Article  CAS  PubMed  Google Scholar 

  43. Song Z, Liu Y, Zhong Y, Guo Q, Zeng J, Geng Z. Adv Mater, 2022, 34: 2204306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22293015, 22203099, and 22121002), Strategic Priority Research Program (A) of the Chinese Academy of Sciences (XDA0390400), and Photon Science Center for Carbon Neutrality. The X-ray absorption spectroscopy measurements were performed at Beamline 4B9A at Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofu Sun or Buxing Han.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Published in virtual special issue “Sustainable nitrogen chemistry”

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2024_2040_MOESM1_ESM.pdf

Efficient Nitrate Electroreduction over Mn-doped Cu Catalyst via Regulating N-containing Intermediates Adsorption Configuration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Jia, S., Zhang, L. et al. Efficient nitrate electroreduction over Mn-doped Cu catalyst via regulating N-containing intermediates adsorption configuration. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-024-2040-8

Navigation