Skip to main content
Log in

FTO promotes gastric cancer progression by modulating MAP4K4 expression via demethylation in an m6A-dependent manner

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is a serious malignant tumour with a high mortality rate and a poor prognosis. Recently, emerging evidence has suggested that N6-methyladenosine (m6A) modification plays a crucial regulatory role in cancer progression. However, the exact role of m6A regulatory factors FTO in GC is unclear. First, the expression of m6A methylation-related regulatory factors in clinical samples and the clinical data of the corresponding patients were obtained from The Cancer Genome Atlas (TCGA-STAD) dataset, and correlation analysis between FTO expression and patient clinicopathological parameters was subsequently performed. qRT-PCR, immunohistochemistry (IHC) and western blotting (WB) were used to verify FTO expression in GC. CCK-8, EdU, flow cytometry and transwell assays were used to evaluate the effect of FTO on the behaviour of GC cells. Transcriptome sequencing and RNA immunoprecipitation analysis were used to explore the potential regulatory mechanisms mediated by FTO. FTO was highly expressed in GC tissues and cells, and high expression of FTO predicted a worse prognosis than low expression. Functionally, overexpression of FTO promoted the proliferation, migration and invasion of GC cells but inhibited cell apoptosis. Mechanistically, we found that FTO is upregulated in GC and promotes GC progression by modulating the expression of MAP4K4. Taken together, our findings provide new insights into the effects of FTO-mediated m6A demethylation and could lead to the development of new strategies for GC monitoring and aggressive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Transcriptomic, matched clinical data and MAF files were downloaded from the TCGA database (https://portal.gdc.cancer.gov/).

References

  1. Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49.

    Article  Google Scholar 

  2. Zong L, Abe M, Seto Y, Ji J. The challenge of screening for early gastric cancer in China. Lancet. 2016;388(10060):2606.

    Article  PubMed  Google Scholar 

  3. Janjigian Y, Shitara K, Moehler M, Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T, Campos Bragagnoli A, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398(10294):27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun H, Li K, Liu C, Yi C. Regulation and functions of non-mA mRNA modifications. Nat Rev Mol Cell Biol. 2023;24(10):714–31.

    Article  CAS  PubMed  Google Scholar 

  5. Li D, Shen L, Zhang X, Chen Z, Huang P, Huang C, Qin S. LncRNA ELF3-AS1 inhibits gastric cancer by forming a negative feedback loop with SNAI2 and regulates ELF3 mRNA stability via interacting with ILF2/ILF3 complex. J Exp Clin Cancer Res. 2022;41(1):332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gerken T, Girard C, Tung Y, Webby C, Saudek V, Hewitson K, Yeo G, McDonough M, Cunliffe S, McNeill L, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Su R, Deng X, Chen Y, Chen J. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer. 2022;8(7):598–614.

    Article  PubMed  Google Scholar 

  8. Yang S, Wei J, Cui Y, Park G, Shah P, Deng Y, Aplin A, Lu Z, Hwang S, He C, et al. mA mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019;10(1):2782.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Posta M, Győrffy B. Analysis of a large cohort of pancreatic cancer transcriptomic profiles to reveal the strongest prognostic factors. Clin Transl Sci. 2023;16(8):1479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang H, Han Q, Zheng H, Wang J. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis. 2022. https://doi.org/10.1038/s41419-021-04474-1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Juin A, Spence H, Machesky L. Dichotomous role of the serine/threonine kinase MAP4K4 in pancreatic ductal adenocarcinoma onset and metastasis through control of AKT and ERK pathways. J Pathol. 2024. https://doi.org/10.1002/path.6248.

    Article  PubMed  Google Scholar 

  13. Li L, Li Z, Meng X, Wang X, Song D, Liu Y, Xu T, Qin J, Sun N, Tian K, et al. Histone lactylation-derived LINC01127 promotes the self-renewal of glioblastoma stem cells via the cis-regulating the MAP4K4 to activate JNK pathway. Cancer Lett. 2023;579: 216467.

    Article  CAS  PubMed  Google Scholar 

  14. Chen K, Yuan X, Wang S, Zheng F, Fu Z, Shen Z, Cheng X, Wang Y, Tang S, Ni H, et al. MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Oncogene. 2023;42(18):1438–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding L, Jiang L, Xing Z, Dai H, Wei J. Map4k4 is up-regulated and modulates granulosa cell injury and oxidative stress in polycystic ovary syndrome via activating JNK/c-JUN pathway: an experimental study. Int Immunopharmacol. 2023;124: 110841.

    Article  CAS  PubMed  Google Scholar 

  16. Wan C, Chen W, Cui Y, He Z. MAP4K4/JNK signaling pathway stimulates proliferation and suppresses apoptosis of human spermatogonial stem cells and lower level of MAP4K4 is associated with male infertility. Cells. 2022. https://doi.org/10.3390/cells11233807.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Siegel R, Giaquinto A, Jemal A. Cancer statistics. CA. 2024;74(1):12–49.

    PubMed  Google Scholar 

  18. Xu J, Jiang H, Pan Y, Gu K, Cang S, Han L, Shu Y, Li J, Zhao J, Pan H, et al. Sintilimab plus chemotherapy for unresectable gastric or gastroesophageal junction cancer: the ORIENT-16 randomized clinical trial. JAMA. 2023;330(21):2064–74.

    Article  PubMed  Google Scholar 

  19. Kelly R, Ajani J, Kuzdzal J, Zander T, Van Cutsem E, Piessen G, Mendez G, Feliciano J, Motoyama S, Lièvre A, et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med. 2021;384(13):1191–203.

    Article  CAS  PubMed  Google Scholar 

  20. Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: focusing on partial EMT and regulatory mechanisms. Cell Prolif. 2023;56(6): e13423.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liabeuf D, Oshima M, Stange D, Sigal M. Stem cells, Helicobacter pylori, and mutational landscape: utility of preclinical models to understand carcinogenesis and to direct management of gastric cancer. Gastroenterology. 2022;162(4):1067–87.

    Article  CAS  PubMed  Google Scholar 

  22. Grady W, Yu M, Markowitz S. Epigenetic alterations in the gastrointestinal tract: current and emerging use for biomarkers of cancer. Gastroenterology. 2021;160(3):690–709.

    Article  CAS  PubMed  Google Scholar 

  23. Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Cancer-associated fibroblast-secreted IGFBP7 promotes gastric cancer by enhancing tumor associated macrophage infiltration via FGF2/FGFR1/PI3K/AKT axis. Cell Death Discov. 2023;9(1):17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin J, Zhan G, Liu J, Maimaitiyiming Y, Deng Z, Li B, Su K, Chen J, Sun S, Zheng W, et al. YTHDF2-mediated regulations bifurcate BHPF-induced programmed cell deaths. Nat Sci Rev. 2023. https://doi.org/10.1093/nsr/nwad227.

    Article  Google Scholar 

  25. Guirguis A, Ofir-Rosenfeld Y, Knezevic K, Blackaby W, Hardick D, Chan Y, Motazedian A, Gillespie A, Vassiliadis D, Lam E, et al. Inhibition of METTL3 results in a cell-intrinsic interferon response that enhances antitumor immunity. Cancer Discov. 2023;13(10):2228–47.

    Article  PubMed  Google Scholar 

  26. Wang L, Dou X, Chen S, Yu X, Huang X, Zhang L, Chen Y, Wang J, Yang K, Bugno J, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell. 2023;41(7):1294-1308.e1298.

    Article  CAS  PubMed  Google Scholar 

  27. Kan R, Chen J, Sallam T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends Genet. 2022;38(2):182–93.

    Article  CAS  PubMed  Google Scholar 

  28. Flamand M, Tegowski M, Meyer K. The proteins of mRNA modification: writers, readers, and erasers. Annu Rev Biochem. 2023;92:145–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shulman Z, Stern-Ginossar N. The RNA modification N-methyladenosine as a novel regulator of the immune system. Nat Immunol. 2020;21(5):501–12.

    Article  CAS  PubMed  Google Scholar 

  30. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28(5):507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li M, Wu X, Li G, Lv G, Wang S. FTO promotes the stemness of gastric cancer cells. DNA Cell Biol. 2023;42(7):411–20.

    Article  CAS  PubMed  Google Scholar 

  32. González-Montero J, Rojas C, Burotto M. MAP4K4 and cancer: ready for the main stage? Front Oncol. 2023;13:1162835.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao X, Gao C, Liu G, Hu J. MAP4K4: an emerging therapeutic target in cancer. Cell Biosci. 2016;6:56.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Singh S, Roy R, Kumar S, Srivastava P, Jha S, Rana B, Rana A. Molecular insights of MAP4K4 signaling in inflammatory and malignant diseases. Cancers. 2023. https://doi.org/10.3390/cancers15082272.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81974385).

Author information

Authors and Affiliations

Authors

Contributions

ZY and XG designed the study. ZY and XL carried out the experiment. ZY collected and analysed data. ZY and XG wrote and revised the manuscript. ZW was responsible for supervising the study. All authors read and gave final approval of the manuscript.

Corresponding author

Correspondence to Ziwei Wang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Guo, X., Liang, X. et al. FTO promotes gastric cancer progression by modulating MAP4K4 expression via demethylation in an m6A-dependent manner. Med Oncol 41, 120 (2024). https://doi.org/10.1007/s12032-024-02369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02369-7

Keywords

Navigation