Skip to main content
Log in

Toll-like receptor activation regulates the paracrine effect of adipose-derived mesenchymal stem cells on reversing osteoarthritic phenotype of chondrocytes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The therapeutic efficacy of intra-articular mesenchymal stem cells (MSCs) injection for patients with osteoarthritis (OA) currently exhibits inconsistency, and the underlying mechanism remains elusive. It has been postulated that the immunomodulatory properties and paracrine activity of MSCs might be influenced by the inflammatory micro-environment within osteoarthritic joints, potentially contributing to this observed inconsistency.

Methods

Adipose-derived MSCs (ADSCs) were isolated from SD rats and pre-treated with Toll-like receptor 3 (TLR3) agonist Poly I:C or Toll-like receptor 4 (TLR4) agonist LPS. The pre-treated ADSCs were then co-cultured with IL-1β-induced osteoarthritic chondrocytes using a Transwell system to analyze the paracrine effect of ADSCs on reversing the osteoarthritic phenotype of chondrocytes.

Results

RT-PCR and Western blot analysis revealed that Poly I:C and LPS pre-treatments up-regulated the expression of IL-10 and IL-6 in ADSCs, respectively. Furthermore, only Poly I:C-preconditioned ADSCs significantly promoted proliferation while inhibiting apoptosis in IL-1β-treated chondrocytes. Additionally, Poly I:C-preconditioned ADSCs downregulated MMP13 expression while upregulating aggrecan and collagen II expression levels in IL-1β-treated chondrocytes.

Conclusions

TLR3 activation polarizes ADSCs into an immunomodulatory phenotype distinct from TLR4 activation, exerting differential effects on reversing the osteoarthritic phenotype of chondrocytes; thus indicating that MSCs’ paracrine effect regulated by TLRs signaling impacts the efficacy of intra-articular MSCs injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding authors.

References:

  1. Katz JN, Arant KR, Loeser RF (2021) Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA, J Am Med Assoc 325(6):568–578. https://doi.org/10.1001/jama.2020.22171

    Article  CAS  Google Scholar 

  2. Safiri S, Kolahi A, Smith E, Hill C, Bettampadi D, Mansournia MA, Hoy D, Ashrafi-Asgarabad A, Sepidarkish M, Almasi-Hashiani A, Collins G, Kaufman J, Qorbani M, Moradi-Lakeh M, Woolf AD, Guillemin F, March L, Cross M (2020) Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the global burden of disease study 2017. Ann Rheum Dis 79(6):819–828. https://doi.org/10.1136/annrheumdis-2019-216515

    Article  PubMed  Google Scholar 

  3. Abramoff B, Caldera FE (2020) Osteoarthritis. Med Clin North Am 104(2):293–311. https://doi.org/10.1016/j.mcna.2019.10.007

    Article  PubMed  Google Scholar 

  4. Quicke JG, Conaghan PG, Corp N, Peat G (2022) Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis Cartilage 30(2):196–206. https://doi.org/10.1016/j.joca.2021.10.003

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M (2022) Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 18(5):258–275. https://doi.org/10.1038/s41584-022-00749-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Labinsky H, Panipinto PM, Ly KA, Khuat DK, Madarampalli B, Mahajan V, Clabeaux J, Macdonald K, Verdin PJ, Buckner JH, Noss EH (2020) Multiparameter analysis identifies heterogeneity in knee osteoarthritis synovial responses. Arthritis Rheumatol 72(4):598–608. https://doi.org/10.1002/art.41161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng L, Zhang Z, Sheng P, Mobasheri A (2021) The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 66:101249. https://doi.org/10.1016/j.arr.2020.101249

    Article  CAS  PubMed  Google Scholar 

  8. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N (2019) Biological functions of mesenchymal stem cells and clinical implications. Cellular and molecular life sciences : CMLS 76(17):3323–3348. https://doi.org/10.1007/s00018-019-03125-1

    Article  CAS  PubMed  Google Scholar 

  9. Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y (2023) Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 168:372–387. https://doi.org/10.1016/j.actbio.2023.07.024

    Article  CAS  PubMed  Google Scholar 

  10. Lee WS, Kim HJ, Kim KI, Kim GB, Jin W (2019) Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase iib, randomized, placebo-controlled clinical trial. Stem Cells Transl Med 8(6):504–511. https://doi.org/10.1002/sctm.18-0122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J (2023) Biomaterials combined with adscs for bone tissue engineering: current advances and applications. Regen. Biomater. 10:rbad83. https://doi.org/10.1093/rb/rbad083

    Article  CAS  Google Scholar 

  12. Bhattacharjee M, Escobar IJ, Kan HM, Shah S, Otsuka T, Bordett R, Barajaa M, Nagiah N, Pandey R, Nair LS, Laurencin CT (2022) Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci U S A 119(4):e2120968119. https://doi.org/10.1073/pnas.2120968119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan B, Lv S, Tong P, Yan L, Chen Z, Zhou L, Yuan Q, Guo L, Shan L (2022) Intra-articular injection of adipose-derived stem cells ameliorates pain and cartilage anabolism/catabolism in osteoarthritis: preclinical and clinical evidences. Front Pharmacol 13:854025. https://doi.org/10.3389/fphar.2022.854025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hwang JJ, Rim YA, Nam Y, Ju JH (2021) Recent developments in clinical applications of mesenchymal stem cells in the treatment of rheumatoid arthritis and osteoarthritis. Front Immunol 12:631291. https://doi.org/10.3389/fimmu.2021.631291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei P, Bao R (2022) Intra-articular mesenchymal stem cell injection for knee osteoarthritis: mechanisms and clinical evidence. Int J Mol Sci 24(1):59. https://doi.org/10.3390/ijms24010059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Copp G, Robb KP, Viswanathan S (2023) Culture-expanded mesenchymal stromal cell therapy: does it work in knee osteoarthritis? A pathway to clinical success. Cell Mol Immunol 20(6):626–650. https://doi.org/10.1038/s41423-023-01020-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galipeau J, Sensébé L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22(6):824–833. https://doi.org/10.1016/j.stem.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, Lai P (2021) Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 14(1):24. https://doi.org/10.1186/s13045-021-01037-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Theeuwes WF, van den Bosch MHJ, Thurlings RM, Blom AB, van Lent PLEM (2021) The role of inflammation in mesenchymal stromal cell therapy in osteoarthritis, perspectives for post-traumatic osteoarthritis: a review. Rheumatology (Oxford) 60(3):1042–1053. https://doi.org/10.1093/rheumatology/keaa910

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Zhou Z, Zeng WN, Zeng Q, Zhang X (2023) The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Front Cell Dev Biol 11:1277686. https://doi.org/10.3389/fcell.2023.1277686

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abdi J, Rashedi I, Keating A (2018) Concise review: tlr pathway-mirna interplay in mesenchymal stromal cells: regulatory roles and therapeutic directions. Stem cells (Dayton, Ohio) 36(11):1655–1662. https://doi.org/10.1002/stem.2902

    Article  CAS  PubMed  Google Scholar 

  22. Shirjang S, Mansoori B, Solali S, Hagh MF, Shamsasenjan K (2017) Toll-like receptors as a key regulator of mesenchymal stem cell function an up-to-date review. Cell Immunol 315:1–10. https://doi.org/10.1016/j.cellimm.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Huang L, Cai Z, Deng W, Wang P, Su H, Wu Y, Shen H (2019) A study of the immunoregulatory function of tlr3 and tlr4 on mesenchymal stem cells in ankylosing spondylitis. Stem Cells Dev 28(20):1398–1412. https://doi.org/10.1089/scd.2019.0039

    Article  CAS  PubMed  Google Scholar 

  24. Rivera-Cruz CM, Figueiredo ML (2023) Evaluation of human adipose-derived mesenchymal stromal cell toll-like receptor priming and effects on interaction with prostate cancer cells. Cytotherapy 25(1):33–45. https://doi.org/10.1016/j.jcyt.2022.09.009

    Article  CAS  PubMed  Google Scholar 

  25. Duan A, Shen K, Li B, Li C, Zhou H, Kong R, Shao Y, Qin J, Yuan T, Ji J, Guo W, Wang X, Xue T, Li L, Huang X, Sun Y, Cai Z, Liu W, Liu F (2021) Extracellular vesicles derived from lps-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model. Stem Cell Res Ther 12(1):427. https://doi.org/10.1186/s13287-021-02507-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li C, Li X, Shi Z, Wu P, Fu J, Tang J, Qing L (2022) Exosomes from lps-preconditioned bone marrow mscs accelerated peripheral nerve regeneration via m2 macrophage polarization: involvement of tsg-6/nf-κb/nlrp3 signaling pathway. Exp Neurol 356:114139. https://doi.org/10.1016/j.expneurol.2022.114139

    Article  CAS  PubMed  Google Scholar 

  27. Vega-Letter AM, Kurte M, Fernandez-O’Ryan C, Gauthier-Abeliuk M, Fuenzalida P, Moya-Uribe I, Altamirano C, Figueroa F, Irarrazabal C, Carrion F (2016) Differential tlr activation of murine mesenchymal stem cells generates distinct immunomodulatory effects in eae. Stem Cell Res Ther 7(1):150. https://doi.org/10.1186/s13287-016-0402-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Latourte A, Kloppenburg M, Richette P (2020) Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol 16(12):673–688. https://doi.org/10.1038/s41584-020-00518-6

    Article  PubMed  Google Scholar 

  29. Soliman H, Theret M, Scott W, Hill L, Underhill TM, Hinz B, Rossi FMV (2021) Multipotent stromal cells: one name, multiple identities. Cell Stem Cell 28(10):1690–1707. https://doi.org/10.1016/j.stem.2021.09.001

    Article  CAS  PubMed  Google Scholar 

  30. Andrzejewska A, Lukomska B, Janowski M (2019) Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 37(7):855–864. https://doi.org/10.1002/stem.3016

    Article  PubMed  Google Scholar 

  31. Ceccariglia S, Cargnoni A, Silini AR, Parolini O (2020) Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy 16(1):28–37. https://doi.org/10.1080/15548627.2019.1630223

    Article  CAS  PubMed  Google Scholar 

  32. Lan T, Luo M, Wei X (2021) Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol 14(1):195. https://doi.org/10.1186/s13045-021-01208-w

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Goncalves RM (2018) Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol 9:2837. https://doi.org/10.3389/fimmu.2018.02837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ragni E, Perucca Orfei C, De Luca P, Colombini A, Viganò M, de Girolamo L (2020) Secreted factors and ev-mirnas orchestrate the healing capacity of adipose mesenchymal stem cells for the treatment of knee osteoarthritis. Int J Mol Sci 21(5):1582. https://doi.org/10.3390/ijms21051582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ling L, Feng X, Wei T, Wang Y, Wang Y, Wang Z, Tang D, Luo Y, Xiong Z (2019) Human amnion-derived mesenchymal stem cell (had-msc) transplantation improves ovarian function in rats with premature ovarian insufficiency (poi) at least partly through a paracrine mechanism. Stem Cell Res Ther 10(1):46. https://doi.org/10.1186/s13287-019-1136-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Liu Y, Zhang J, Yang Y, Liang H, Li T, Yan L, Zhou L, Shan L, Wang H (2023) External application of human umbilical cord-derived mesenchymal stem cells in hyaluronic acid gel repairs foot wounds of types i and ii diabetic rats through paracrine action mode. Stem Cells Transl Med 12(10):689–706. https://doi.org/10.1093/stcltm/szad050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I (2022) Obesity, inflammation, and immune system in osteoarthritis. Front Immunol 13:907750. https://doi.org/10.3389/fimmu.2022.907750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Squillace S, Salvemini D (2022) Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 43(9):726–739. https://doi.org/10.1016/j.tips.2022.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hwang S, Sung DK, Kim YE, Yang M, Ahn SY, Sung SI, Chang YS (2023) Mesenchymal stromal cells primed by toll-like receptors 3 and 4 enhanced anti-inflammatory effects against lps-induced macrophages via extracellular vesicles. Int J Mol Sci 24(22):16264. https://doi.org/10.3390/ijms242216264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vega-Letter AM, Kurte M, Fernández-O’Ryan C, Gauthier-Abeliuk M, Fuenzalida P, Moya-Uribe I, Altamirano C, Figueroa F, Irarrázabal C, Carrión F (2016) Differential tlr activation of murine mesenchymal stem cells generates distinct immunomodulatory effects in eae. Stem Cell Res Ther 7(1):150. https://doi.org/10.1186/s13287-016-0402-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tfilin M, Gobshtis N, Fozailoff D, Fraifeld VE, Turgeman G (2023) Polarized anti-inflammatory mesenchymal stem cells increase hippocampal neurogenesis and improve cognitive function in aged mice. Int J Mol Sci 24(5):4490. https://doi.org/10.3390/ijms24054490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kurte M, Vega-Letter AM, Luz-Crawford P, Djouad F, Noel D, Khoury M, Carrion F (2020) Time-dependent lps exposure commands msc immunoplasticity through tlr4 activation leading to opposite therapeutic outcome in eae. Stem Cell Res Ther 11(1):416. https://doi.org/10.1186/s13287-020-01840-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morente-Lopez M, Mato-Basalo R, Lucio-Gallego S, Silva-Fernandez L, Gonzalez-Rodriguez A, De Toro FJ, Fafian-Labora JA, Arufe MC (2022) Therapy free of cells vs human mesenchymal stem cells from umbilical cord stroma to treat the inflammation in oa. Cell Mol Life Sci 79(11):557. https://doi.org/10.1007/s00018-022-04580-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chahal J, Gomez-Aristizabal A, Shestopaloff K, Bhatt S, Chaboureau A, Fazio A, Chisholm J, Weston A, Chiovitti J, Keating A, Kapoor M, Ogilvie-Harris DJ, Syed KA, Gandhi R, Mahomed NN, Marshall KW, Sussman MS, Naraghi AM, Viswanathan S (2019) Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem Cells Transl Med 8(8):746–757. https://doi.org/10.1002/sctm.18-0183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matas J, Orrego M, Amenabar D, Infante C, Tapia-Limonchi R, Cadiz MI, Alcayaga-Miranda F, Gonzalez PL, Muse E, Khoury M, Figueroa FE, Espinoza F (2019) Umbilical cord-derived mesenchymal stromal cells (mscs) for knee osteoarthritis: repeated msc dosing is superior to a single msc dose and to hyaluronic acid in a controlled randomized phase i/ii trial. Stem Cells Transl Med 8(3):215–224. https://doi.org/10.1002/sctm.18-0053

    Article  CAS  PubMed  Google Scholar 

  46. Fu Z, Song X, Guo L, Yang L, Chen C (2019) Effects of conditioned medium from osteoarthritic cartilage fragments on donor-matched infrapatellar fat pad-derived mesenchymal stromal cells. Am J Sports Med 47(12):2927–2936. https://doi.org/10.1177/0363546519869241

    Article  PubMed  Google Scholar 

  47. Ma K, Zhu B, Wang Z, Cai P, He M, Ye D, Yan G, Zheng L, Yang L, Zhao J (2020) Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy. J Nanobiotechnology 18(1):163. https://doi.org/10.1186/s12951-020-00708-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors’ research work is funded by Chongqing Key Laboratory of Precision Medicine in Joint Surgery (grant: 425Z2138), Chongqing Excellent Scientist Project (grant: 425Z2W21), Chongqing Natural Science Foundation (grant: cstc2021jcyj-msxmX0135), and Chongqing Postdoctoral Research Project Special Fund (grant: 2021XM3033).

Author information

Authors and Affiliations

Authors

Contributions

Z.W, Z.F. and Y.M. collected data, Z.W. and Z.F. wrote the main manuscript text, Z.W., G.D. and X.W. prepared all figures, and X.G., G.C and L.Y. Supervised this study. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xiaoyuan Gong, Guangxing Chen or Liu Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical statement

All animal procedures were approved by the Laboratory Animal Welfare and Ethics Committee of Army Medical University (the Third Military Medical University) (AMUWEC20223809). Our experimental design, procedures, and methods of animal study are in accordance with the "General Principles for Experimental Animal Welfare" (GB/T 42011–2022). We have strictly followed the aforementioned regulations during our experimental procedures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Z., Wang, X., Fu, Z. et al. Toll-like receptor activation regulates the paracrine effect of adipose-derived mesenchymal stem cells on reversing osteoarthritic phenotype of chondrocytes. Mol Biol Rep 51, 550 (2024). https://doi.org/10.1007/s11033-024-09499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09499-1

Keywords

Navigation