Skip to main content
Log in

Progress of Mitochondrial Function Regulation in Cardiac Regeneration

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data used in this study is publicly available.

Abbreviations

αKG:

α-ketoglutarate

ATF:

Activating Transcription Factor

ATM:

Ataxia Telangiectasia Mutated

AMPK:

AMP-Activated Protein Kinase

ceRNA:

Competitive Endogenous RNA

CMEC:

Cardiac Microvascular Endothelial Cell

CVD:

Cardiovascular Diseases

CPT1:

Carnitine Palmitoyltransferase 1

DAMPs:

Damage-Associated Molecular Patterns

DDR:

DNA Damage Response

DN:

Del Nido

ERRs:

Estrogen-Related Receptors

IR:

Ischemia-Reperfusion

LDHA:

Lactate Dehydrogenase A

lncRNA:

Long Non-Coding RNA

MCD:

Malonyl-CoA Decarboxylase

MI:

Myocardial Infarction

miRNAs:

MicroRNAs

Nrf:

Nuclear respiratory Factor

PDH:

Pyruvate Dehydrogenase

PDK4:

Pyruvate Dehydrogenase Kinase 4

PGC:

Peroxisome Proliferator-Activated Receptor γ Coactivator

ROS:

Reactive Oxygen Species

TFAM:

Mitochondrial Transcription Factor A

TMEM:

Transmembrane Protein

UCP:

Uncoupling Protein

References

  1. WHO. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 2021.

  2. Wu X, Reboll MR, Korf-Klingebiel M, et al. Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021;117(5):1257–73.

    Article  CAS  PubMed  Google Scholar 

  3. Guo Q-Y, Yang J-Q, Feng X-X, et al. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Military Med Res. 2023;10(1):18.

    Article  Google Scholar 

  4. Sayers JR, Riley PR. Heart regeneration: beyond new muscle and vessels. Cardiovasc Res. 2021;117(3):727–42.

    Article  CAS  PubMed  Google Scholar 

  5. Harrington J, Jones WS, Udell JA, et al. Acute Decompensated Heart Failure in the Setting of Acute Coronary Syndrome. JACC. Heart Failure. 2022;10(6):404–14.

    Article  PubMed  Google Scholar 

  6. Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol. 2021;18(5):368–79.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harrington J, Petrie MC, Anker SD, et al. Evaluating the Application of Chronic Heart Failure Therapies and Developing Treatments in Individuals With Recent Myocardial Infarction: A Review. JAMA Cardiol. 2022;7(10):1067–75.

    Article  PubMed  Google Scholar 

  8. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rigaud VOC, Hoy RC, Kurian J, et al. RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19. Circulation. 2023;147(4):324–37.

    Article  CAS  PubMed  Google Scholar 

  10. Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56(2):130–40.

    Article  CAS  PubMed  Google Scholar 

  11. Huang S, Li X, Zheng H, et al. Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration After Myocardial Infarction in Adult Mice. Circulation. 2019;139(25):2857–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cardoso AC, Lam NT, Savla JJ, et al. Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nat Metab. 2020;2(2):167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Si X, Zheng H, Wei G, et al. circRNA Hipk3 Induces Cardiac Regeneration after Myocardial Infarction in Mice by Binding to Notch1 and miR-133a. Mol Ther Nucleic Acids. 2020;21:636–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fajardo VM, Feng I, Chen BY, et al. GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration. Sci Rep. 2021;11(1):8669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng H, Huang S, Wei G, et al. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther: J Am Soc Gene Ther. 2022;30(11):3477–98.

    Article  CAS  Google Scholar 

  16. Ma W, Wang X, Sun H, et al. Oxidant stress-sensitive circRNA Mdc1 controls cardiomyocyte chromosome stability and cell cycle re-entry during heart regeneration. Pharmacol Res. 2022;184:106422.

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Wu F, Günther S, et al. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature. 2023;622(7983):619–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kankuri E, Finckenberg P, Leinonen J, et al. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med. 2023;55(4):806–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Li S, Zhang Y, et al. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol. 2021;41:101910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu H, Zhang F, Yan P, et al. LARP7 Protects Against Heart Failure by Enhancing Mitochondrial Biogenesis. Circulation. 2021;143(20):2007–22.

    Article  CAS  PubMed  Google Scholar 

  21. Rigaud VO, Zarka C, Kurian J, et al. UCP2 modulates cardiomyocyte cell cycle activity, acetyl-CoA, and histone acetylation in response to moderate hypoxia. JCI Insight. 2022;7(15)

  22. Chen X-Z, Li X-M, Xu S-J, et al. TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m(7)G methylation of ATF5 mRNA. Cell Death Differ. 2023;30(7):1786–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Northam C, LeMoine CMR. Metabolic regulation by the PGC-1α and PGC-1β coactivators in larval zebrafish (Danio rerio). Comparative biochemistry and physiology. Part A, Mol Integ Physiol. 2019;234:60–7.

    Article  CAS  Google Scholar 

  24. Sakamoto T, Matsuura TR, Wan S, et al. A Critical Role for Estrogen-Related Receptor Signaling in Cardiac Maturation. Circ Res. 2020;126(12):1685–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu Y, Chen H, Zhang L, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy. 2021;17(5):1142–56.

    Article  CAS  PubMed  Google Scholar 

  26. Paredes A, Justo-Méndez R, Jiménez-Blasco D, et al. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature. 2023;618(7964):365–73.

    Article  CAS  PubMed  Google Scholar 

  27. Malik N, Ferreira BI, Hollstein PE, et al. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science. 2023;380(6642):eabj5559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramachandra CJA, Chua J, Cong S, et al. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res. 2021;117(3):694–711.

    Article  CAS  PubMed  Google Scholar 

  29. Brown DA, Perry JB, Allen ME, et al. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14(4):238–50.

    Article  CAS  PubMed  Google Scholar 

  30. Picard M, Shirihai OS. Mitochondrial signal transduction. Cell Metab. 2022;34(11):1620–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mejia EM, Hatch GM. Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr. 2016;48(2):99–112.

    Article  CAS  PubMed  Google Scholar 

  32. Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–24.

    Article  CAS  PubMed  Google Scholar 

  33. Vringer E, Tait SWG. Mitochondria and cell death-associated inflammation. Cell Death Different. 2023;30(2):304–12.

    Article  CAS  Google Scholar 

  34. Schiaffarino O, Valdivieso González D, García-Pérez IM, et al. Mitochondrial membrane models built from native lipid extracts: Interfacial and transport properties. Front Mol Biosci. 2022;9:910936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vogel F, Bornhövd C, Neupert W, et al. Dynamic subcompartmentalization of the mitochondrial inner membrane. The J Cell Biol. 2006;175(2):237–47.

    Article  CAS  PubMed  Google Scholar 

  36. Yan C, Duanmu X, Zeng L, et al. Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells. 2019;8(4)

  37. Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell. 2023;83(6):857–76.

    Article  CAS  PubMed  Google Scholar 

  38. Lu Y, Li Z, Zhang S, et al. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ajoolabady A, Chiong M, Lavandero S, et al. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med. 2022;28(10):836–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu W, Sun S, Xu H, et al. TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury. Theranostics. 2020;10(24):11244–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sakaguchi A, Kimura W. Metabolic regulation of cardiac regeneration: roles of hypoxia, energy homeostasis, and mitochondrial dynamics. Curr Opinion Genetics Dev. 2021;70:54–60.

    Article  CAS  Google Scholar 

  42. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. The Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  43. Dai D-F, Chen T, Wanagat J, et al. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell. 2010;9(4):536–44.

    Article  CAS  PubMed  Google Scholar 

  44. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Ann Rev Pharmacol Toxicol. 2007;47:143–83.

    Article  CAS  Google Scholar 

  45. Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radical Biol Med. 2022;179:133–43.

    Article  CAS  Google Scholar 

  46. Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Honkoop H, de Bakker DE, Aharonov A, et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife. 2019;8:e50163.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Notari M, Ventura-Rubio A, Bedford-Guaus SJ, et al. The local microenvironment limits the regenerative potential of the mouse neonatal heart. Sci Adv. 2018;4(5):eaao5553.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rindler PM, Crewe CL, Fernandes J, et al. Redox regulation of insulin sensitivity due to enhanced fatty acid utilization in the mitochondria. Am J Physiol Heart Circ Physiol. 2013;305(5):H634–43.

    Article  CAS  PubMed  Google Scholar 

  50. McGarry JD, Takabayashi Y, Foster DW. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. The J Biol Chem. 1978;253(22):8294–300.

    Article  CAS  PubMed  Google Scholar 

  51. Dyck JRB, Cheng J-F, Stanley WC, et al. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res. 2004;94(9):e78–84.

    Article  CAS  PubMed  Google Scholar 

  52. Saaoud F, Drummer IVC, Shao Y, et al. Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacol Therapeut. 2021;220:107715.

    Article  CAS  Google Scholar 

  53. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garikipati VNS, Verma SK, Cheng Z, et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 2019;10(1):4317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Chen Y, Wan Y, et al. Circular RNAs in the Regulation of Oxidative Stress. Front Pharmacol. 2021;12:697903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou W-Y, Cai Z-R, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19(1):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, et al. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res. 2018;131:87–101.

    Article  CAS  PubMed  Google Scholar 

  58. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8.

    Article  CAS  PubMed  Google Scholar 

  59. Shah V, Shah J. Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart Regeneration, vol. 9; 2022. p. 835138.

    Google Scholar 

  60. Tao G, Kahr PC, Morikawa Y, et al. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature. 2016;534(7605):119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuchs P, Bohle F, Lichtenauer S, et al. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. The Plant Cell. 2022;34(4):1375–95.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Goikoetxea MJ, Beaumont J, González A, et al. Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc Res. 2006;69(4):899–907.

    Article  CAS  PubMed  Google Scholar 

  63. Lin C-Y, Gurlo T, Haataja L, et al. Activation of peroxisome proliferator-activated receptor-gamma by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3’-kinase-dependent pathway. The J Clin Endocrinol Metab. 2005;90(12):6678–86.

    Article  CAS  PubMed  Google Scholar 

  64. Pandol SJ, Gottlieb RA. Calcium, mitochondria and the initiation of acute pancreatitis. Pancreatology. 2022;22(7):838–45.

    Article  CAS  PubMed  Google Scholar 

  65. Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. The J Biol Chem. 2002;277(43):40265–74.

    Article  CAS  PubMed  Google Scholar 

  66. Chun Y, Kim J. AMPK-mTOR Signaling and Cellular Adaptations in Hypoxia. Int J Mol Sci. 2021;22(18):9765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carling D. AMPK signalling in health and disease. Curr Opinion Cell Biol. 2017;45:31–7.

    Article  CAS  PubMed  Google Scholar 

  68. Ji X, Chen Z, Wang Q, et al. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab. 2024;S1550-4131(24):00017–2.

    Google Scholar 

  69. Li X, Zhu Y, Ruiz-Lozano P, et al. Mitochondrial-to-nuclear communications through multiple routes regulate cardiomyocyte proliferation. Cell Regeneration. 2024;13(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang N, Fan M, Zhao Y, et al. Biomimetic and NOS-Responsive Nanomotor Deeply Delivery a Combination of MSC-EV and Mitochondrial ROS Scavenger and Promote Heart Repair and Regeneration. Adv Sci. 2023;10(21):e2301440.

    Article  Google Scholar 

  71. Xiang K, Wu H, Liu Y, et al. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics. 2023;13(8):2721–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang K, Yao S-Y, Wang Z, et al. A Sequential Dual Functional Supramolecular Hydrogel with Promoted Drug Release to Scavenge ROS and Stabilize HIF-1α for Myocardial Infarction Treatment. Adv Healthcare Mater. 2024;13(6):e2302940.

    Article  Google Scholar 

  73. Diao H, Dai W, Wurm D, et al. Del Nido cardioplegia or potassium induces Nrf2 and protects cardiomyocytes against oxidative stress. Am J Physiol Cell Physiol. 2023;325(6):C1401–14.

    Article  CAS  PubMed  Google Scholar 

  74. Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine. Mol Ther Nucleic Acids. 2017;8:132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hydbring P, Badalian-Very G. Clinical applications of microRNAs [version 1; peer review: 2 approved]. F1000Res. 2013;2(136)

  76. Chen Y, Wu G, Li M, et al. LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation by alleviating ROS and inducing M2 macrophage polarization. Redox Biol. 2022;56:102446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun M, Jiang W, Mu N, et al. Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases. J Transl Med. 2023;21(1):347.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sun X, Chen H, Gao R, et al. Intravenous Transplantation of an Ischemic-specific Peptide-TPP-mitochondrial Compound Alleviates Myocardial Ischemic Reperfusion Injury. ACS Nano. 2023;17(2):896–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang J, Bolli R, Garry DJ, et al. Basic and Translational Research in Cardiac Repair and Regeneration: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021;78(21):2092–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Key Clinical Frontier Technology Project of Department of Science and Technology of Jiangsu Provincial (NO. BE2022806), and the National Natural Science Foundation of China (NO. 82370344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Sheng Wang.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors have given consent for publication.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YX., Zhao, AR., Wei, TW. et al. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-024-10514-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-024-10514-w

Keywords

Navigation