Skip to main content
Log in

Bifunctional Applications of Facile Mg-doped ZnO Nanoparticles Fabricated Via Co-precipitation Technique

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zn1−xMgxO nanoparticles (NPs) were synthesized by co-precipitation technique. The prepared NPs were investigated by XRD, FTIR, SEM with EDAX, XPS, UV–Vis and PL spectroscopy. X-ray diffraction revealed the occurrence of crystalline nature and hexagonal wurtzite structure. FTIR confirmed that bands appearing around 507–519 cm−1 relates to ZnO and 853–856 cm−1 for MgO. SEM revealed that the NPs had hexagonal wurtzite structure with a spherical shape and EDAX confirmed that Zn, Mg and O elements were present in the sample. In accordance with XRD, XPS verified that Mg2+ had assimilated into the ZnO lattice. Blueshift and the band gap increased from 3.28 to 3.35 eV were observed in optical investigation. UV emission peak blueshifts from 396 to 392 nm, according to photoluminescence (PL) spectra. Mg-doped ZnO NPs (x = 0.6) showed maximum degradation of 96% for Methylene blue dye under UV–Vis irradiation. Using the agar diffusion method, antibacterial studies were carried out for both Gram-positive and Gram-negative bacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study

References

  1. G. Vishnu, H.S.B. Naik, R. Viswanath, B.R. Kirthan, P.H.A. Nayak, M.A. Bajiri, Combustion-assisted green-synthesized magnesium-doped cadmium ferrite nanoparticles for multifunctional applications. New J. Chem. 46(4), 1943–59 (2022)

    Article  Google Scholar 

  2. G. Vishnu, S. Singh, T.S.S. Kumar Naik, R. Viswanath, P.C. Ramamurthy, P. Bhadrecha et al., Photodegradation of methylene blue dye using light driven photocatalyst-green cobalt doped cadmium ferrite nanoparticles as antibacterial agents. J. Clean. Prod. 404(February), 136977 (2023)

    Article  CAS  Google Scholar 

  3. G. Vishnu, S. Singh, N. Kaul, P.C. Ramamurthy, T.S.S.K. Naik, R. Viswanath et al., Green synthesis of nickel-doped magnesium ferrite nanoparticles via combustion for facile microwave-assisted optical and photocatalytic applications. Environ. Res. 235(March), 116598 (2023)

    Google Scholar 

  4. J.H. Li, X.Y. Chu, M.Z. Xu, X. Li, X. Fang, Z.P. Wei, X.H. Wang, Y.J. Zhai, Photocatalytic performance in oxide nanomaterials. Integr. Ferroelectr. 167, 1–16 (2015)

    Article  Google Scholar 

  5. K. Choi, T. Kang, S.-G. Oh, Preparation of disk shaped ZnO particles using surfactant and their PL properties. Mater. Lett. 75, 240 (2012). https://doi.org/10.1016/j.matlet.20-12.02.031

    Article  CAS  Google Scholar 

  6. A. Mesaros, B.S. Vasile, D. Toloman, O.L. Pop, T. Marinca, M. Unguresan, I. Perhaita, M. Filip, F. Iordache, Towards understanding the enhancement of antibacterial activity in manganese doped ZnO nanoparticles. Appl. Surf. Sci. 471, 960–972 (2019). https://doi.org/10.1016/j.apsus.2018.12.086

    Article  CAS  Google Scholar 

  7. E. Gharoy Ahangar, M.H. Abbaspour-Fard, N. Shahtahmassebi, M. Khojastehpour, P. Maddahi, Preparation and characterization of PVA/ZnO nanocomposite. J. Food Process. Preserv. 39, 1442–1451 (2015). https://doi.org/10.1111/jfpp.12363

    Article  CAS  Google Scholar 

  8. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)

    Article  CAS  Google Scholar 

  9. J.M. Yousef, E.N. Danial, In-vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. Int. J. Health Sci. 2, 38–42 (2012). https://doi.org/10.5923/j.health.20120204.04

    Article  Google Scholar 

  10. R.K. Dutta, B.P. Nenavathu, M.K. Gangishetty, A.V.R. Reddy, Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf. B Bio. Interfaces 94, 143–150 (2012). https://doi.org/10.1016/j.colsurfb.2012.01.046

    Article  CAS  Google Scholar 

  11. L. Nie, L. Gao, P. Feng, J. Zhang, three-dimensional functionalized tetrapod like ZnO nanostructures for plasmid DNA delivery. Small 2, 1063–1077 (2006)

    Article  Google Scholar 

  12. J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expet. Opin. Drug Deliv. 7, 1063–1077 (2010)

    Article  CAS  Google Scholar 

  13. S.H. Yoon, D.J Kim, Fabrication and characterization of ZnO films for biological sensor application of FPW device, Applications of ferroelectrics 15th IEEE Int. Symp. 322–325 (2006).

  14. N. Zhang, D. Cu, Fabrication of flower like hierarchical ZnO nanostructures with enhanced photocatalytic activity. Surf. Interfaces 14, 251–255 (2019)

    Article  Google Scholar 

  15. X. Lu, Z. Liu, Y. Zhu, L. Jiang, Sonochemical synthesis and photocatalytic property of zinc oxide nanoparticles doped with magnesium (II). Mater. Res. Bull. 46, 1638–1641 (2011)

    Article  CAS  Google Scholar 

  16. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorg. Chem. 46, 6675–6682 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. Soc. 133, 16414–16417 (2011)

    Article  CAS  Google Scholar 

  18. M. Naeem, S. Qaseem, I.H. Gul, A. Maqood, Study of active surface defects in Ti doped ZnO nanoparticles. J. Appl. Phys. 107, 124303 (2010). https://doi.org/10.1063/1.3432571

    Article  CAS  Google Scholar 

  19. O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643–646 (2001). https://doi.org/10.1016/S1466-6049(01)00197-0

    Article  CAS  Google Scholar 

  20. A. Sirel Khatim, S.M. Azman, S.N. Haida, M., Kaus, L. Chuo, A.S. Khadijah, S.K. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015)

  21. Y. Abdissa, K. Siraj, G. Selale, Effect of Mg2+, Ca2+ and Sr2+ ions doping on the band gap energy of ZnO nanoparticle, JOJ Mater. Sci. 4–9 (2018). https://doi.org/10.19080/JOJMS.2018.03.555620

  22. K. Chandrasekaran, S. Seemaisamy, S.K. Venugopal, S. Kumaresan, G. Ravi, A.S.H. Hamees, Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-coprecipitation method. Mater. Chem. B 1, 5950–5962 (2013)

    Article  Google Scholar 

  23. S.M. Mousavi, A.R. Mahjoub, R. Abazari, Facile green fabrication of nano structural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation. J. Mol. Liq. 242, 512–519 (2017)

    Article  CAS  Google Scholar 

  24. M.F. Nsib, S. Saafi, A. Rayes, N. Moussa, A. Houas, Enhanced photocatalytic performance of Ni-ZnO/Polyaniline generation. J. Energy Inst. 89(4), 694–703 (2016)

    Article  CAS  Google Scholar 

  25. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  26. P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. 448, 481–488 (2018)

    Article  CAS  Google Scholar 

  27. S.J. Priscilla, R. Daniel, Y. Dhakshayani, S.C. Caroline, K. Sivaji, Effect of magnesium dopant on the structural, morphological and electrical properties of ZnO nanoparticles by sol-gel method. Mater. Today Proc. 36, 793–796 (2021)

    Article  CAS  Google Scholar 

  28. R. Raji, K.S. Sibi, K.G. Gopchandran, ZnO: Ag nanorods as efficient photocatalysts: sunlight driven photocatalytic degradation of sulforhodamine B. Appl. Surf. Sci. 427, 863–875 (2018)

    Article  CAS  Google Scholar 

  29. C. Abed, C. Bouzidi, H. Elhouichet, B. Gelloz, F. Mokhtar, Mg doping induced high structural quality of sol-gel ZnO nanocrystals: application in photocatalysis. Appl. Surf. Sci. 15, 855–863 (2015)

    Article  Google Scholar 

  30. N. Zarei, M. A. Behnajady, Synthesis, characterization and photocatalytic activity of sol-gel prepared Mg/ZnO nanoparticles, Desalination and Water treatment (2015) 1–7.

  31. J. Sengupta, A. Ahmed, R. Labar, Structural and optical properties of post annealed Mg doped ZnO thin films deposited by the sol-gel method. Mater. Lett. 109, 265–268 (2013)

    Article  CAS  Google Scholar 

  32. S. Sharma, R. Vyas, N. Sharma, V. Singh, A. Singh, V. Kataria, B.K. Gupta, Y.K. Vijay, Highly efficient green light harvesting from Mg doped ZnO nanoparticles: structural and optical studies. J. Alloy. Compd. 552, 208–212 (2013)

    Article  CAS  Google Scholar 

  33. S. Riffat, K. Momina, A. Vaneeza, N.K. Zohra, T. Unza, A. Faiza, Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optic 200, 163428 (2020)

    Google Scholar 

  34. S. Sitthichai, A. Phuruangrat, T. Thongtem, S. Thongtem, Influence of Mg dopant on photocatalytic properties od Mg-doped ZnO nanoparticles prepared by sol-gel method. J. Ceram. Soc. Jpn. 125, 122–124 (2017). https://doi.org/10.2109/jcersj2.16202

    Article  CAS  Google Scholar 

  35. M. Arshad, M.M. Ansari, A.S. Ahmed, P. Tripathi, S.S.Z. Ashraf, A.H. Naqvi, A. Azam, Band gap engineering and enhanced photoluminescence of Mg doped ZnO nanoparticles synthesized by wet chemical route. J. Lumin. 161, 275–280 (2015). https://doi.org/10.1016/j.jlumin.2014.12.016

    Article  CAS  Google Scholar 

  36. C. Abed, C. Bouzidi, H. Elhouichet, B. Gelloz, M. Ferid, Mg doping induced high structural quality of sol-gel ZnO nanocrystals: application in photocatalysis. Appl. Surf. Sci. 349, 855–863 (2015). https://doi.org/10.1016/j.apsusc.2015.05078

    Article  CAS  Google Scholar 

  37. G. Kasi, J. Seo, Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater. Sci. Eng. 98, 717–725 (2019)

    Article  CAS  Google Scholar 

  38. R.M. Alwan, Q.A. Kadham, K.M. Sahan, R.J. Mahdi, N.A. Kassim, A.N. Jassim, Synthesis of zinc oxide nanoparticles via sol-gel route and their characterization. Appl. Surf. Sci. 5, 1–6 (2015)

    Google Scholar 

  39. E. Maryanti, D. Damayanti, I. Gustian, S.S. Yudha, Synthesis of ZnO nanoparticles by hydrothermal method in aqueous rinds extracts of Sapindus rarak DC. Mater. Lett. 118, 96–98 (2014)

    Article  CAS  Google Scholar 

  40. S. Suwanboon, P. Amornpitoksuk, Preparation of Mg-doped ZnO nanoparticles by mechanical milling and their optical properties. Procedia Eng 32, 821–826 (2012). https://doi.org/10.1016/j.proeng.2012.02.018

    Article  CAS  Google Scholar 

  41. A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res. Lett. 8, 1–10 (2013)

    Article  Google Scholar 

  42. S. Nagashree, C.S. Karthik, B.L. Sudarshan, L. Mallesha, H.P. Spoorthy, K.R. Sanjay, P. Mallu, In vitro antimicrobial activity of new 2-amino-4-chloropyridine derivatives: a structure-activity relationship study. J. Pharm. Res. 9(8), 509–516 (2015)

    CAS  Google Scholar 

  43. M.M. Naik, H.SB. Naik, G. Nagaraju, M. Vinuth, K. Vinu, S.K. Rashmi, J. Mater. Sci.: Mater. Electron. 29, 20395 (2018).

  44. S.A. Kaur, G.S. Randhawa, R. Singh, Synthesis and structural analysis of cobalt doped zinc nanoparticles. IOSR J. Appl. Phys. 9, 18–24 (2017)

    Google Scholar 

  45. D. Kim, A. Hussain, H.-L. Lee, Y.-J. Moon, J.Y. Hwang, S.-J. Moon, Stepwise current increment sintering of silver nanoparticle structure. Crystals 11(10), 1264 (2021)

    Article  Google Scholar 

  46. G. Yu, L. Yue, S.G. Liu, B.B. Huang, X.Y. Zhang, Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres. J. Colloid Interface Sci. 334(1), 58–64 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. G.H. Ning, X.-P. Zhao, J. Li, Structure and optical properties of MgxZn1-xO nanoparticles prepared by sol-gel method. Opt. Mater. 27(1), 1–5 (2004)

    Article  CAS  Google Scholar 

  48. Q. He, C. Zhong, J.W. Wu, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  49. F. Gu, H. Chen, D. Han, Z. Wang, RSC Adv. 6, 29727 (2016)

    Article  CAS  Google Scholar 

  50. F. Jamali-sheini, R. Yousefi, K.R. Patil, Ceram. Int. 38, 6665 (2012)

    Article  CAS  Google Scholar 

  51. N.H. Al-hardan, A. Abdul, A. Jalar, R. Shamsudin, N. Kamil, ECS J. Solid State Sci. Technol. 6, 571 (2017)

    Article  Google Scholar 

  52. H. Ishizaki, N. Yamada, Electrochem. Solid-State Lett. 9, C178 (2006)

    Article  CAS  Google Scholar 

  53. F.A. Mir, K.M. Batoo, Effect of Ni and Au ion irradiations on structural and optical properties of nanocrystalline Sb-doped SnO2 thin films. Appl. Phys. A 122, 418 (2016). https://doi.org/10.1007/s00339-016-9948-3

    Article  CAS  Google Scholar 

  54. S.S. Manoharan, S. Arora, Mater. Sci. Eng., B 162, 68–73 (2009)

  55. R. Ghosh, D. Basak, J. Appl. Phys. 113111-1–13111-6 (2007)

  56. K. Bouzid, A. Djelloul, N. Bouzid, J. Bougdira. Phys. Status Solidi A 206, 106–115 (2009)

    Article  CAS  Google Scholar 

  57. R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra, Spectrochim. Acta, Part A 79, 1605–1612 (2011)

    Article  CAS  Google Scholar 

  58. T.P. Rao, M.C.S. Kumar, N.S. Hussian, J. Alloys Compd. 541, 495–504 (2012)

    Article  Google Scholar 

  59. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X.Z. Wu, X.Z. Zhao, J. Cryst. Growth 292, 19–25 (2006)

    Article  CAS  Google Scholar 

  60. Y. Sun, N.G. Ndifer-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352–357 (2006)

    Article  CAS  Google Scholar 

  61. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170, 520–529 (2009)

    Article  CAS  PubMed  Google Scholar 

  62. S. Alahiane, S. Qourzal, Md. El Ouardi, A. Abaamrane, Assabbane Ali, Factors influencing the photocatalytic degradation of reactive yellow 145 by TiO2-coated nonwoven fibers. Am. J. Anal. Chem. 5, 445–54 (2014)

    Article  CAS  Google Scholar 

  63. V.K. Mahajan, G.H. Sonawane, Improved photocatalytic activity of CeO2 coupling ultrasound for Eosin-Y degradation. J. Appl. Chem. 4(5), 1500–1506 (2015)

    CAS  Google Scholar 

  64. P. Jantawasu, T. Sreethawong, S. Chavadej, Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater. Chem. Eng. J. 155, 223–233 (2009)

    Article  CAS  Google Scholar 

  65. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A 157, 111–116 (2003)

    Article  CAS  Google Scholar 

  66. S.P. Patil, R.P. Patil, V.K. Mahajan, G.H. Sonawane, V.S. Shrivastava, S.H. Sonawane, Facile sonochemical synthesis of BiOBr-graphene oxide nanocomposite with enhanced photocatalytic activity for the degradation of Direct green. Mater. Sci. Semicond. Process. 52, 55–61 (2016)

    Article  CAS  Google Scholar 

  67. H. Wang, Ripon Bhattacharjee, I-Ming Hung, Labgkai Li, Renjie Zeng, Material characteristics and electro chemical performance of Sn-doped ZnO spherical-particle photoanode for dye-sensitized solar cells. Electrochem. Acta 111, 797–801 (2013)

    Article  CAS  Google Scholar 

  68. M. Oshikiri, M. Boero, J.H. Ye, Z.G. Zou, G. Kido, Electronic structures of promising photocatalysts InMO4(M = V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J. Chem. Phys. 11, 77313–77318 (2002)

    Google Scholar 

  69. Y. Hosogi, Y. Shimodaira, H. Kobayashi, A. Kato, Role of Sn2+ in the Band Structure of SnM2O6 and Sn2M2O7 (M= Nb and Ta) and their photocatalytic properties. Chem. Mater. 20, 1299–1307 (2008)

    Article  CAS  Google Scholar 

  70. Y. Peltzer, E.L. Blanca, A. Svane, N. Christensen, C. Rodri Guez, O. Cappannini, M. Moreno, Calculated static and dynamic properties of beta-Sn and SnO2 compounds. Phys. Rev. B 48, 15712–15718 (1993)

    Article  Google Scholar 

  71. M. Radeeka, P. Pasierb, K. Zakrzewska, M. Rekas, Transport properties of (Sn, Ti) O2 polycrystalline ceramics and thin films. Solid State Ionics 119, 43–48 (1999)

    Article  Google Scholar 

  72. S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterization of photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38, 3001–3008 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. V. Revathi, K. Karthik, Microwave assisted CdO-ZnO-MgO nanocomposite and its photocatalytic and antibacterial studies. J. Mater. Sci. Mater. Electron. 29, 18519–18530 (2018)

    Article  CAS  Google Scholar 

  74. G. Sharmila, M. Thirumarimurugan, C. Muthukumaran, Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J. 145, 578–587 (2019)

    Article  CAS  Google Scholar 

  75. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B. 190, 8–20 (2019)

    Article  CAS  PubMed  Google Scholar 

  76. N. Chandrasekhar, S.P. Vinay, Yellow colored blooms of Argemone Mexicana and Turnera ulmifolia mediated synthesis of silver NPs and study of their antibacterial and antioxidant activity. Appl. Nanosci. 7(8), 851–861 (2017)

    Article  CAS  Google Scholar 

  77. D. Suresh, P.C. Nethravathi, H. Udayabhanu, H. Rajanaika, H. Nagabhushana, S.C., Sharma, Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Proc. 31, 446–454 (2015)

  78. K. Karthik, S. Dhanuskodi, C. Gopinath, S. Sivaramakrishnan, Antibacterial activities of CdO Microplates synthesized by hydrothermal method. (IJIRSE) Int. J. Innov. Res. Sci. Eng. (2017)

  79. K. Karthik, M. Madhukara Naik, M. Shashank, M. Vinuth, V. Revathi, Microwave-assisted ZrO2 nanoparticles and its photocatalytic and antibacterial studies. J. Clust. Sci. (2018). https://doi.org/10.1007/s10876-018-1484-1

  80. Mohammed A. Al-Omair, Mai M. Khalaf, A.H. Touny, H. Elsawy, M.M. Saleh, Antimicrobial activities of mesoporous nickel phosphate synthesized with low temperature method. Microchem. J. 145, 113–118 (2019)

    Article  CAS  Google Scholar 

  81. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Multifunctional properties of CdO nanostructures synthesized through microwave assisted hydrothermal method, (2017). https://doi.org/10.1080/14328917.2018.1475443

  82. Mónica Andrea. Vargas, Eric M. Rivera-Muñoz, Jesús E. Diosa, Edgar E. Mosquera, Jorge E. Rodríguez-Páez, Nanoparticles of ZnO and Mg-doped ZnO: synthesis, characterization and efficient removal of methyl orange (MO) from aqueous solution. Ceram. Int. 47, 15668 (2021). https://doi.org/10.1016/j.ceramint.2021.02.137

    Article  CAS  Google Scholar 

  83. R.E. Adam, H. Alnoor, G., Pozina, X. Liu, M. Willander, O. Nur, Synthesis of Mg-doped ZnO NPs via a chemical low-temperature method and investigation of the efficient photocatalytic activity for the degradation of dyes under solar light. Solid State Sci. (2019). https://doi.org/10.1016/j.solidstatesciences.2019.106053

  84. K. Vijai Anand, J. Aravind Kumar, K. Keerthana, P. Deb, S. Tamilselvan, J. Theerthagiri, V. Rajeswari, S.M.S. Sekaran, K. Govindaraju, Photocatalytic degradation of rhodamine B dye using biogenic hybrid ZnO-MgO nanocomposites under visible light. Chem. Select. 4, 5178–5184 (2019). https://doi.org/10.1002/slct.201900213

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to the Chairman, Department of PG Studies and Research in Industrial Chemistry, Kuvempu University for providing laboratory facilities and valuable guidance. The authors also obliged to (SAIF-KUD) Karnataka University, Dharwad and SIT Tumkur for allowing some spectral analysis, The authors also thankful to SAIF IIT Bombay for giving opportunity to carry HRTEM characterization facility, The authors are thankful to Institute Instrumentation Centre, IIT Roorkee for providing XPS characterization facility.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Credit Author Statement. SA: Conception, design of study, drafting and writing of the manuscript; VG: reviewing, editing, critical revision of the manuscript and final approval. HSBN, RV: Supervision of work. BS, SM, HS: Acquisition, analysis and interpretation of data.

Corresponding author

Correspondence to H. S. Bhojya Naik.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreya, A., Naik, H.S.B., Vishnu, G. et al. Bifunctional Applications of Facile Mg-doped ZnO Nanoparticles Fabricated Via Co-precipitation Technique. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03073-9

Keywords

Navigation