Skip to main content
Log in

Integrated evaluation of the biological response of the earthworm Eisenia fetida using two glyphosate exposure strategies: soil enriched and soils collected from crops in Southeastern Mexico

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Under laboratory conditions, the toxicological effects of pesticides tend to be less variable and realistic than under field conditions, limiting their usefulness in environmental risk assessment. In the current study, the earthworm Eisenia fetida was selected as a bioindicator for assessing glyphosate toxic effects in two different trials to solve this dilemma. In Trial 1, the worms were exposed for 7 and 14 days to concentrations of a commercial glyphosate formulation (1 to 500 mg a.i. kg−1) currently used in the field. In Trial 2, the worms were kept in nine soils collected from different plots with crops for 14 days of exposure. In both experiments, glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE) activities and contents of lipid peroxidation (LPO) were evaluated. In T1, the glyphosate formulation produced a 40% inhibition of AChE activity and a significant increase in GST, SOD, CAT, and GPx activities and LPO contents in E. fetida on day 7. In T2, higher concentrations of glyphosate were detected in the soils of soybean, papaya, and corn (0.92, 0.87, and 0.85 mg kg−1), which induced a positive correlation between the levels of glyphosate residues with GST, SOD, CAT, GPx, and LPO and a negative correlation with AChE. These findings indicate that crop soils polluted with glyphosate elicited higher oxidative stress than under laboratory conditions, confirmed by IBRv2, PCA, and AHC analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addinsoft SARL (2018) XLSTATsoftware, version 2018.5, New York: USA, Addinsoft Inc

  • Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2013) Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere 90:2674–2682

    Article  CAS  Google Scholar 

  • Aly MA, Schröder P (2008) Effect of herbicides on glutathione S-transferases in the earthworm, Eisenia fetida. Environ Sci Pollut Res Int 15(2):143–149

    Article  Google Scholar 

  • Andrade-Herrera M, Escalona-Segura G, González-Jáuregui M, Reyna-Hurtado R, Vargas-Contreras JA, Rendónvon Osten J (2019) Presence of pesticides and toxicity assessment of agricultural soils in the Quintana Roo Mayan Zone, Mexico using biomarkers in earthworms (Eisenia fetida). Water Air Soil Pollut 230:59

  • Aparicio VC, De Gerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93(9):1866–1873

    Article  CAS  Google Scholar 

  • Bailey DC, Todt CE, Burchfield SL, Pressley AS, Denney RD, Snapp IB, Negga R, Traynor WL, Fitsanakis VA (2018) Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. Environ Toxicol Pharmacol 57:46–52

    Article  CAS  Google Scholar 

  • Bandeira FO, Lopes Alves PR, Hennig TB, Toniolo T, Natal-da-Luz T, Baretta D (2020) Effect of temperature on the toxicity of imidacloprid to Eisenia andrei and Folsomia candida in tropical soils. Environ Pollut 267:115565

    Article  CAS  Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(1):3

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:48–254

    Article  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Cattani D, Cesconetto PA, Tavares MK, Parisotto EB, De Oliveira PA, Rieg CEH, Leite MC, Prediger RDS, Wendt NC, Razzera G, Filho DW, Zamoner A (2017) Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: implication of glutamate excitotoxicity and oxidative stress. Toxicology 387:67–80

    Article  CAS  Google Scholar 

  • Colacevich A, Sierra MJ, Borghini F, Millán R, Sanchez-Hernandez JC (2011) Oxidative stress in earthworms short- and long-term exposed to highly Hg-contaminated soils. J Hazard Mater 194:135–143

    Article  CAS  Google Scholar 

  • Contardo-Jara V, Klingelmann E, Wiegand C (2009) Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ Pollut 157(1):57–63

    Article  CAS  Google Scholar 

  • Correia FV, Moreira JC (2010) Efects of glyphosate and 2, 4-D on earthworms (Eisenia fetida) in laboratory tests. Bull Environ Contam Toxicol 85(3):264–268

    Article  CAS  Google Scholar 

  • Cuhra M (2015) Review of GMO safety assessment studies: glyphosate residues in Roundup Ready crops is an ignored issue. Environ Sci Eur 27:20

    Article  Google Scholar 

  • Daam MA, Chelinho S, Niemeyer JC, Owojori OJ, De Silva PMCS, Sousa JP, Van Gestel CAM, Rombke J (2019) Environmental risk assessment of pesticides in tropical terrestrial ecosystems: test procedures, current status and future perspectives. Ecotoxicol Environ Saf 181:534–547

    Article  CAS  Google Scholar 

  • De Silva PMCS (2009) Pesticide effects on earthworms. A tropical perspective. Ph.D. Thesis, VU Amsterdam, The Netherlands. pp 117

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61:219–224

    Article  CAS  Google Scholar 

  • Dzul-Caamal R, Olivares-Rubio HF, Salazar-Coria L, Rocha-Gómez MA, Vega-López A (2016a) Multivariate analysis of biochemical responses using non-invasive methods to evaluate the health status of the endangered blackfin goodeid (Girardinichthys viviparus). Ecol Indic 60:1118–1129

    Article  CAS  Google Scholar 

  • Dzul-Caamal R, Salazar-Coria L, Olivares-Rubio HF, Rocha-Gómez MA, Girón-Pérez MI, Vega-López A (2016b) Oxidative stress response in the skin mucus layer of Goodea gracilis (Hubbs and Turner, 1939) exposed to crude oil: a non-invasive approach. Comp Biochem Physiol A Mol Integr Physiol 200:9–20

    Article  CAS  Google Scholar 

  • Dzul-Caamal R, Vega-López A, Rendón-von Osten J (2020) Distribution of heavy metals in crop soils from an agricultural region of the Yucatan Peninsula and biochemical changes in earthworm Eisenia fetida exposed experimentally. Environ Monit Assess 192(6):338

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Frasco MF, Colletier JP, Weik M, Carvalho F, Guilhermino L, Stojan J, Fournier D (2007) Mechanisms of cholinesterase inhibition by inorganic mercury. FEBS J 274(7):1849–1861

    Article  CAS  Google Scholar 

  • García-Santos G, Keller-Forrer K (2011) Avoidance behaviour of Eisenia fetida to carbofuran, chlorpyrifos, mancozeb and metamidophos in natural soils from the highlands of Colombia. Chemosphere 84:651–656

    Article  Google Scholar 

  • García-Torres T, Giuffré L, Romaniuk R, Ríos RP, Pagano EA (2014) Exposure assessment to glyphosate of two species of annelids. Bull Environ Contam Toxicol 93(2):209–214

    Article  Google Scholar 

  • Gaupp-Berghausen M, Hofer M, Rewald B, Zaller JG (2015) Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci Rep 5:12886

    Article  CAS  Google Scholar 

  • Givaudan N, Binet F, Le Bot B, Wiegand C (2014) Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities. Environ Pollut 192:9–18

    Article  CAS  Google Scholar 

  • Gomes MP, Smedbol E, Chalifour A, Hénault-Ethier L, Labrecque M, Lepage L, Lucotte M, Juneau P (2014) Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. J Exp Bot 65(17):469–4703

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  Google Scholar 

  • Hackenberger BK, Jarić-Perkusić D, Stepić S (2008) Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae). Ecotoxicol Environ Saf 71(2):583–589

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 5a. ed. Oxford University Press

  • Jänsch S, Frampton G, Römbke J, Van den Brink P, Scott-Fordsmand J (2006) Effects of pesticides on soil invertebrates in model ecosystem and field studies: a review and comparison with laboratory toxicity data. Environ Toxicol Chem 25:2490–2501

    Article  Google Scholar 

  • Kuperman RG, Amorim MJB, Römbke J, Lanno R, Checkai RT, Dodard SG, Sunahara GI, Scheffczyk A (2006) Adaptation of the enchytraeid toxicity test for use with natural soil types. Eur J Soil Biol 42:S234–S243

    Article  Google Scholar 

  • Laitinen P, Siimes K, Eronen L, Rämö S, Welling L, Oinonen S, Mattsoff L, Ruohonen-Lehto M (2006) Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Manag Sci 62(6):473–491

    Article  CAS  Google Scholar 

  • Lei XG, Evenson JK, Thompson KM, Sunde RA (1995) Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 125(6):1438–1446

    CAS  Google Scholar 

  • Liu T, Ren ZL, Zhang C, Chen XF, Zhou B, Dai J (2012) Effects of composting with earthworm on the chemical and biological properties of agricultural organic wastes: a principal component analysis. Ying Yong Sheng Tai Xue Bao 23(3):779–784

    CAS  Google Scholar 

  • Lushchak OV, Kubrak OI, Storey JM, Storey KB, Lushchak VI (2009) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932–937

    Article  CAS  Google Scholar 

  • Maqueda C, Undabeytia T, Villaverde J, Morillo E (2017) Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Sci Total Environ 593–594:787–795

    Article  Google Scholar 

  • Marcano L, Hernández J, Zapata-Vívenes E, León A (2017) Effects of contaminated natural soil by Glyphosan ® SL on biochemical responses of the earthworm Eisenia sp. J Toxicol Environ Health Sci 9(10):92–97

    Article  CAS  Google Scholar 

  • Menéndez-Helman RJ, Ferreyroa GV, Afonso MS, Salibián A (2012) Glyphosate as na acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bull Environ Contam Toxicol 88:6–9

    Article  Google Scholar 

  • Mertens M, Höss S, Neumann G, Afzal J, Reichenbecher W (2017) Glyphosate, a chelating agent — relevant for ecological risk assessment? Environ Sci Pollut Res Int 25(6):5298–5317

    Article  Google Scholar 

  • Mesnage R, Oestreicher N, Poirier F, Nicolas V, Boursier C, Vélot C (2020) Transcriptome profiling of the fungus Aspergillus nidulans exposed to a commercial glyphosate-based herbicide under conditions of apparent herbicide tolerance. Environ Res 182:109116

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    Article  CAS  Google Scholar 

  • Mwila K, Burton MH, Van Dyk JS, Pletschke BI (2013) The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ Monit Assess 185(3):2315–2327

    Article  CAS  Google Scholar 

  • Niemeyer JC, Chelinho S, Sousa JP (2017) Soil ecotoxicology in Latin America: current research and perspectives. Environ Toxicol Chem 36(7):1795–1810

    Article  CAS  Google Scholar 

  • OECD (1984) Guidelines for the testing of chemicals. No. 207 Earthworm acute toxicity tests, OECD, Paris, France.

  • Owagboriaye F, Dedeke G, Bamidele J, Aladesida A, Isibor P, Feyisola R, Adeleke M (2020) Biochemical response and vermiremediation assessment of three earthworm species (Alma millsoni, Eudrilus eugeniae and Libyodrilus violaceus) in soil contaminated with a glyphosate-based herbicide. Ecol Indic 108:105678

    Article  CAS  Google Scholar 

  • Pastrana-Cervantes D, Bachem C, Huerta E, Yang X (2017) Glyphosate and AMPA concentrations in two types of agroecosystems and in the natural vegetation of Hopelchen. Mexico. Wageningen University, Wageningen, Paises Bajos, p 16

    Google Scholar 

  • Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66

    Article  CAS  Google Scholar 

  • Piola L, Fuchs J, Oneto ML, Basack S, Kesten E, Casabe N (2013) Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 91(4):545–551

    Article  CAS  Google Scholar 

  • Pochron ST, Mirza A, Mezic M, Chung E, Ezedum Z, Geraci G, Mari J, Meiselbach C, Shamberger O, Smith R, Tucker WJ, Zafar S (2021) Earthworms Eisenia fetida recover from Roundup exposure. Appl Soil Ecol 158:103793

    Article  Google Scholar 

  • Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266(32):22028–22034

    Article  CAS  Google Scholar 

  • Rault M, Mazzia C, Capowiez Y (2007) Tissue distribution and characterization of cholinesterase activity in six earthworm species. Comp Biochem Physiol B Biochem Mol Biol 147(2):340–346

    Article  Google Scholar 

  • Reiner E (1971) Spontaneous reactivation of phosphorylated and carbamylated cholinesterases. Bull World Health Organ 44:109–112

    CAS  Google Scholar 

  • Rendón-von Osten J, Dzul-Caamal R (2017) Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. Int J Environ Res Public Health 14(6):E595

    Article  Google Scholar 

  • Salvio C, Menone ML, Rafael S, Iturburu FG, Manetti PL (2016) Survival, reproduction, avoidance behavior and oxidative stress biomarkers in the earthworm Octolasion cyaneum Exposed to Glyphosate. Bull Environ Contam Toxicol 96(3):314–319

    Article  CAS  Google Scholar 

  • Sandrini JZ, Rola RC, Lopes FM, Buffon HF, Freitas MM, Martins CMG, Rosa CE (2013) Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: in vitro studies. Aquat Toxicol 130–131:171–173

    Article  Google Scholar 

  • Santadino M, Coviella C, Momo F (2014) Glyphosate sublethal effects on the population dynamics of the earthworm Eisenia fetida (Savigny, 1826). Water Air Soil Pollut 225(12):2207

    Article  Google Scholar 

  • Santos MJ, Morgado R, Ferreira NG, Soares AM, Loureiro S (2011) Evaluation of the joint effect of glyphosate and dimethoate using a small-scale terrestrial ecosystem. Ecotoxicol Environ Saf 74(7):1994–2001

    Article  CAS  Google Scholar 

  • Sforzini S, Moore MN, Boeri M, Bencivenga M, Viarengo A (2015) Effects of PAHs and dioxins on the earthworm Eisenia andrei: a multivariate approach for biomarker interpretation. Environ Pollut 196:60–71

    Article  CAS  Google Scholar 

  • Shi Y, Zhang Q, Huang D, Zheng X, Shi Y (2016) Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination. Pestic Biochem Physiol 128:22–29

    Article  CAS  Google Scholar 

  • Silva V, Montanarella L, Jones A, Fernández-Ugalde O, Mol HGJ, Ritsema CJ, Geissen V (2018) Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci Total Environ 621:1352–1359

    Article  CAS  Google Scholar 

  • Syan HS, Prasher SO, Pageau D, Singh J (2014) Dissipation and persistence of major herbicides applied in transgenic and non-transgenic canola production in Quebec. Eur J Soil Biol 63:21–27

    Article  CAS  Google Scholar 

  • Tarouco F, Godoi F, Velasques R, Guerreiro A, Geihs M, Rosa C (2017) Efects of the herbicide Roundup on the polychaeta Laeonereis acuta: Cholinesterases and oxidative stress. Ecotoxicol Environ Saf 135:259–266

    Article  CAS  Google Scholar 

  • Villanueva-Gutiérrez R, Echazarreta-González C, Roubik DW, Moguel-Ordóñez YB (2014) Transgenic soybean pollen (Glycine max L.) in honey from the Yucatán peninsula. Mexico. Sci Rep 4:4022

    Article  Google Scholar 

  • Xiong W, Sun Y, Zou M, Muhammad RUH (2013) Molecular cloning, characterization of CAT, and eco-toxicological effects of dietary zinc oxide on antioxidant enzymes in Eisenia fetida. Environ Sci Pollut Res 20(3):1746

    Article  CAS  Google Scholar 

  • Yan X, Wang J, Zhu L, Wang J, Li S, Kim YM (2021) Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. Sci Total Environ 754:141873

    Article  CAS  Google Scholar 

  • Zhou CF, Wang YJ, Li CC, Sun RJ, Yu YC, Zhou DM (2013) Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida). Environ Pollut 180:71–77

    Article  CAS  Google Scholar 

  • Zhu L, Li B, Wu R, Li W, Wang J, Wang J, Du Z, Juhasz A, Zhu L (2020) Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia Fetida): the difference between artificial and natural soils. Chemosphere 255:126982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The findings in this document reflect the work of the authors who are fellows of the National System of Researchers (SNI, CONACyT, Mexico). This work was supported by Secretariat of Public Education (SEP-MEXICO) through Program for Professional Teacher Development (PRODEP) under the project PRODEP/511-6/17-7507.

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed to the conception and design of the manuscript. Material preparation, methodology of biomarkers, analysis of data, and writing were performed by Ricardo Dzul Caamal and Armando Vega López. The glyphosate analisys was performed by Jaime Rendón von Osten. All the authors read, reviewed, and approved previous and final version of the manuscript to be published.

Corresponding author

Correspondence to Jaime Rendón-von Osten.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors have given consent to their contribution.

Consent for publication

All authors have agreed with the content and all have given explicit consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Chris Lowe

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzul-Caamal, R., Vega-López, A. & Osten, J.Rv. Integrated evaluation of the biological response of the earthworm Eisenia fetida using two glyphosate exposure strategies: soil enriched and soils collected from crops in Southeastern Mexico. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-33348-0

Keywords

Navigation