Skip to main content
Log in

Dietary Poly-β-Hydroxybutyrate Improved the Growth, Non-specific Immunity, Digestive Enzyme Activity, Intestinal Morphology, Phagocytic Activity, and Disease Resistance Against Vibrio parahaemolyticus of Pacific White Shrimp, Penaeus vannamei

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

This study assessed the effects of dietary supplementation of poly-β-hydroxybutyrate (PHB) on growth performance, feed efficiency, non-specific immunity, digestive enzyme capacity, phagocytic activity, hemocyte count, intestinal morphology, and disease resistance against Vibrio parahaemolyticus of Pacific white shrimp (Penaeus vannamei). Six diets were prepared by supplementing graded levels of PHB at 0.00, 0.25, 0.50, 1.00, 2.00, and 4.00% (Con, P0.25, P0.5, P1.0, P2.0, and P4.0, respectively). Triplicate groups of 90 shrimps (initial body weight 0.25 ± 0.01 g) per treatment were randomly assigned and fed an experimental diet for 56 days. The growth performance of shrimp was significantly improved by 1% dietary PHB supplementation. PHB-included diets fed shrimp showed significantly improved hepatopancreatic trypsin, chymotrypsin, and pepsin activities. Villus height was significantly increased with dietary PHB supplementation, and villus width was increased at a 1% inclusion level. P0.25, P0.5, and P4.0 groups significantly increased phenoloxidase activity, and the P2.0 group significantly increased anti-protease activity compared to the Con group. The survival of shrimp challenged against V. parahaemolyticus was higher in P0.5, P1.0, and P2.0 groups than in the Con diet. Dietary PHB supplementation improved weight gain, digestive enzyme activity, intestinal morphology, non-specific immunity, and disease resistance against V. parahaemolyticus of shrimp. According to the above observations, the optimal dietary PHB supplementation level for maximum weight gain would be 1% for Pacific white shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All the datasets analyzed in this study are available from the corresponding author upon reasonable request.

References

  • Abnave P, Muracciole X, Ghigo E (2017) Macrophages in invertebrates: from insects and crustaceans to marine bivalves. Macrophages: Origin Functi Biointerv 147–158

  • Anson ML (1938) The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J Gen Physiol 22:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AOAC (2005) Official Method of Analysis of the Association of Official Analytical Chemists, 18th edn. Association of Official Analytical Chemists Inc, Arlington, VA

    Google Scholar 

  • Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22:458–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:e54

    Google Scholar 

  • Calzada RJ, Tumbokon BLM, Serrano AE Jr (2020) Effects of vinegars on the growth performance of black tiger post larvae shrimp, Penaeus monodon. Isr J Aquac 72:1–8

    Google Scholar 

  • Daniels CL, Merrifield DL, Boothroyd DP, Davies SJ, Factor JR, Arnold KE (2010) Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 304:49–57

    Article  CAS  Google Scholar 

  • De Schryver P, Sinha AK, Kunwar PS, Baruah K, Verstraete W, Boon N, Bossier P (2010) Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl Microbiol Biotechnol 86:1535–1541

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Halet D, Sorgeloos P, Bossier P, Verstraete W (2006) Short-chain fatty acids protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. Aquaculture 261:804–808

    Article  CAS  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2009) Short-chain fatty acids and poly-β-hydroxyalkanoates:(new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhang Y, Dong H, Zheng X, Wang Y, Li H, Zhang J (2017) Effect of dietary poly-β-hydroxybutyrate (PHB) on growth performance, intestinal health status and body composition of Pacific white shrimp Litopenaeus vannamei (Boone, 1931). Fish Shellfish Immunol 60:520–528

    Article  CAS  PubMed  Google Scholar 

  • Ellis AE (1990) Techniques in fish immunology. Lysozyme Assays 1:101–103

    Google Scholar 

  • Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2020) The state of world fisheries and aquaculture. Sustainability in Action, Rome

    Google Scholar 

  • Franke A, Clemmesen C, De Schryver P, Garcia-Gonzalez L, Miest JJ, Roth O (2017) Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass postlarvae. Aquac Res 48:5707–5717

    Article  CAS  Google Scholar 

  • Fukami K, Takagi F, Sonoda K, Okamoto H, Kaneno D, Horikawa T, Takita M (2021) Effects of the monomeric components of poly-hydroxybutyrate-co-hydroxyhexanoate on the growth of Vibrio penaeicida in vitro and on the survival of infected kuruma shrimp (Marsupenaeus japonicus). Animals 11:567

    Article  PubMed  PubMed Central  Google Scholar 

  • Galán JE (1996) Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20:263–271

    Article  PubMed  Google Scholar 

  • Han JE, Tang KF, Tran LH, Lightner DV (2015) Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp. Dis Aquat Organ 113:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han JE, Choi SK, Han SH, Lee SC, Jeon HJ, Lee C, Lee KJ (2020) Genomic and histopathological characteristics of Vibrio parahaemolyticus isolated from an acute hepatopancreatic necrosis disease outbreak in Pacific white shrimp (Penaeus vannamei) cultured in Korea. Aquaculture 524:735284

    Article  CAS  Google Scholar 

  • Hernández-López J, Gollas-Galván T, Vargas-Albores F (1996) Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:61–66

    Article  Google Scholar 

  • Hernández JCS, Murueta JHC (2009) Activity of trypsin from Litopenaeus vannamei. Aquaculture 290:190–195

    Article  Google Scholar 

  • Hoseinifar SH, Sun YZ, Caipang CM (2017) Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquac Res 48:1380–1391

    Article  CAS  Google Scholar 

  • Hultmark D, STEINER H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Jiravanichpaisal P, Lee BL, Söderhäll K (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211:213–236

    Article  CAS  PubMed  Google Scholar 

  • Johansson MW, Keyser P, Sritunyalucksana K, Söderhäll K (2000) Crustacean haemocytes and haematopoiesis. Aquaculture 191:45–52

    Article  CAS  Google Scholar 

  • Kanost MR (1999) Serine proteinase inhibitors in arthropod immunity. Dev Comp Immunol 23:291–301

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Suárez LEC, Arasu MV, Al-Dhabi NA (2014) Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microb Cell Fact 13:1–12

    Article  Google Scholar 

  • Kiran GS, Priyadharshini S, Dobson AD, Gnanamani E, Selvin J (2016) Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms Microbiomes 2:16002

    Article  Google Scholar 

  • Kiran GS, Priyadharshini S, Sajayan A, Ravindran A, Priyadharshini GB, Ramesh U, Selvin J (2020) Dietary administration of gelatinised polyhydroxybutyrate to Penaeus vannamei improved growth performance and enhanced immune response against Vibrio parahaemolyticus. Aquaculture 517:734773

    Article  CAS  Google Scholar 

  • Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345

    Article  CAS  PubMed  Google Scholar 

  • Kuepethkaew S, Sangkharak K, Benjakul S, Klomklao S (2017a) Optimized synthesis of biodiesel using lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. Renew Energy 104:139–147

    Article  CAS  Google Scholar 

  • Kuepethkaew S, Sangkharak K, Benjakul S, Klomklao S (2017b) Use of TPP and ATPS for partitioning and recovery of lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. J Food Sci Technol 54:3880–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, Orth K (2017) Acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus strains maintain an antibacterial type VI secretion system with versatile effector repertoires. Appl Environ Microbiol 83:e00737-e817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, De Schryver P, Van Delsen B, Maignien L, Boon N, Sorgeloos P, Defoirdt T (2010) PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiol Ecol 74:196–204

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang M, Wei C, Liu Y, Pan M, Wang S, Tian X (2022) Effects of dietary poly-β-hydroxybutyrate supplementation on the growth, non-specific immunity, and intestinal microbiota of the sea cucumber Apostichopus japonicus. Front Mar Sci 9:855938

    Article  Google Scholar 

  • Low CF, Chong CM (2020) Peculiarities of innate immune memory in crustaceans. Fish Shellfish Immunol 104:605–612

    Article  CAS  PubMed  Google Scholar 

  • Medagoda N, Chotikachinda R, Hasanthi M, Lee KJ (2023) Dietary supplementation of a mixture of nucleotides, β-glucan and vitamins C and E improved the growth and health performance of olive flounder. Paralichthys Olivaceus Fishes 8:302

    Article  Google Scholar 

  • Monica M, Priyanka T, Akshaya M, Rajeswari V, Sivakumar L, Somasundaram ST, Shenbhagarathai R (2017) The efficacy of poly-β-hydroxy butyrate (PHB)/biosurfactant derived from Staphylococcus hominis against white spot syndrome virus (WSSV) in Penaeus monodon. Fish Shellfish Immunol 71:399–410

    Article  CAS  PubMed  Google Scholar 

  • Munoz M, Cedeno R, Rodrı́guez J, van der Knaap WP, Mialhe E, Bachere E, (2000) Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp. Penaeus Vannamei Aquaculture 191:89–107

    Article  CAS  Google Scholar 

  • Najdegerami EH, Baruah K, Shiri A, Rekecki A, Van den Broeck W, Sorgeloos P, De Schryver P (2015) Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly-β-hydroxybutyrate (PHB): effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. Aquac Res 46:801–812

    Article  CAS  Google Scholar 

  • Nhan DT, Wille M, De Schryver P, Defoirdt T, Bossier P, Sorgeloos P (2010) The effect of poly β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 302:76–81

    Article  CAS  Google Scholar 

  • Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  CAS  PubMed  Google Scholar 

  • Qiao G, Xu C, Sun Q, Xu DH, Zhang M, Chen P, Li Q (2019) Effects of dietary poly-β-hydroxybutyrate supplementation on the growth, immune response and intestinal microbiota of soiny mullet (Liza haematocheila). Fish Shellfish Immunol 91:251–263

    Article  CAS  PubMed  Google Scholar 

  • Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639

    Article  CAS  PubMed  Google Scholar 

  • Romano N, Koh CB, Ng WK (2015) Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture 435:228–236

    Article  CAS  Google Scholar 

  • Shamsuzzaman MM, Biswas TK (2012) Aqua chemicals in shrimp farm: a study from south-west coast of Bangladesh. Egypt J Aquat Res 38:275–285

    Article  Google Scholar 

  • Shan X, Xiao Z, Huang W, Dou S (2008) Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture 281:70–76

    Article  CAS  Google Scholar 

  • Silva BC, Vieira FDN, Mouriño JLP, Bolivar N, Seiffert WQ (2016a) Butyrate and propionate improve the growth performance of Litopenaeus vannamei. Aquac Res 47:612–623

    Article  Google Scholar 

  • Silva BC, Jesus GFA, Seiffert WQ, Vieira FN, Mouriño JLP, Jatobá A, Nolasco-Soria H (2016b) The effects of dietary supplementation with butyrate and polyhydroxybutyrate on the digestive capacity and intestinal morphology of Pacific white shrimp (Litopenaeus vannamei). Mar Freshw Behav Physiol 49:447–458

    Article  CAS  Google Scholar 

  • Situmorang ML, Suantika G, Santoso M, Khakim A, Wibowo I, Aditiawati P, Haniswita, (2020) Poly-β-hydroxybutyrate (PHB) improves nursery-phase pacific white shrimp Litopenaeus vannamei defense against vibriosis. N Am J Aquac 82:108–114

    Article  Google Scholar 

  • Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 6175804:17

    Google Scholar 

  • Soto-Rodriguez SA, Lozano-Olvera R, Ramos-Clamont Montfort G, Zenteno E, Sánchez-Salgado JL, Vibanco-Pérez N, Aguilar Rendón KG (2022) New insights into the mechanism of action of PirAB from Vibrio parahaemolyticus. Toxins 14:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suguna P, Binuramesh C, Abirami P, Saranya V, Poornima K, Rajeswari V, Shenbagarathai R (2014) Immunostimulation by poly-β hydroxybutyrate–hydroxyvalerate (PHB–HV) from Bacillus thuringiensis in Oreochromis mossambicus. Fish Shellfish Immunol 36:90–97

    Article  CAS  PubMed  Google Scholar 

  • Sui L, Liu Y, Sun H, Wille M, Bossier P, De Schryver P (2014) The effect of poly-β-hydroxybutyrate on the performance of Chinese mitten crab (Eriocheir sinensis Milne-E dwards) zoea larvae. Aquac Res 45:558–565

    Article  CAS  Google Scholar 

  • Sun M, Li S, Zhang X, Xiang J, Li F (2020) Isolation and transcriptome analysis of three subpopulations of shrimp hemocytes reveals the underlying mechanism of their immune functions. Dev Comp Immunol 108:103689

    Article  CAS  PubMed  Google Scholar 

  • Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, Lightner DV (2013) Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ 105:45–55

    Article  PubMed  Google Scholar 

  • Van Hung N, De Schryver P, Tam TT, Garcia-Gonzalez L, Bossier P, Nevejan N (2015) Application of poly-β-hydroxybutyrate (PHB) in mussel larviculture. Aquaculture 446:318–324

    Article  CAS  Google Scholar 

  • Van Immerseel F, De Buck J, Pasmans F, Velge P, Bottreau E, Fievez V, Ducatelle R (2003) Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int J Food Microbiol 85:237–248

    Article  PubMed  Google Scholar 

  • Vargas-Albores F, Yepiz-Plascencia G (2000) Beta glucan binding protein and its role in shrimp immune response. Aquaculture 191:13–21

    Article  CAS  Google Scholar 

  • Verdouw H, Van Echteld CJA, Dekkers EMJ (1978) Ammonia determination based on indophenol formation with sodium salicylate. Water Res 12:399–402

    Article  CAS  Google Scholar 

  • Wächtershäuser A, Stein J (2000) Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr 39:164–171

    Article  PubMed  Google Scholar 

  • Yang CC, Lu CL, Chen S, Liao WL, Chen SN (2015) Immune gene expression for diverse haemocytes derived from pacific white shrimp. Litopenaeus Vannamei Fish Shellfish Immunol 44:265–271

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu Y, Tian L, Yang H, Liang G, Xu D (2012) Effects of dietary mannan oligosaccharide on growth performance, gut morphology and stress tolerance of juvenile Pacific white shrimp. Litopenaeus Vannamei Fish Shellfish Immunol 33:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Yang L, Huang J, Zhou F, Yang Q, Jiang S, Jiang S (2018) The comprehensive expression analysis of the G protein-coupled receptor from Penaeus monodon indicating it participates in innate immunity and anti-ammonia nitrogen stress. Fish Shellfish Immunol 75:17–26. https://doi.org/10.1016/j.fsi.2018.01.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by CJ CheilJedang Co., Ltd. and Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2019R1A6A1A03033553).

Author information

Authors and Affiliations

Authors

Contributions

Suhyeok Kim participated in the feeding trial, sampling, analyses, and manuscript preparation. Jaebeom Shin and Nalin Medagoda edited the manuscript and analyzed the parameters. Se Ra Choi, So Yun Park, and Jeung-Yil Park designed the experiment, reviewed and edited the manuscript, and provided ingredients. Kyeong-Jun Lee organized and supervised the whole study and completed the manuscript.

Corresponding author

Correspondence to Kyeong-Jun Lee.

Ethics declarations

Ethical Approval

The protocols of this feeding trial were evaluated and approved by the Institutional Animal Care and Use Committee of Jeju National University.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Shin, J., Medagoda, N. et al. Dietary Poly-β-Hydroxybutyrate Improved the Growth, Non-specific Immunity, Digestive Enzyme Activity, Intestinal Morphology, Phagocytic Activity, and Disease Resistance Against Vibrio parahaemolyticus of Pacific White Shrimp, Penaeus vannamei. Mar Biotechnol (2024). https://doi.org/10.1007/s10126-024-10317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10126-024-10317-9

Keywords

Navigation