Skip to main content
Log in

Effects of Arbuscular Mycorrhizal Fungi on the Growth and Physiological Performance of Sophora davidii Seedling Under Low-Phosphorus Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Sophora davidii is a multipurpose, nitrogen-fixing shrub species. Phosphorus deficiency in the acidic soil of Southwest China has seriously affected its survival and growth, especially in the seedling stage. Evidence suggests that arbuscular mycorrhizal fungi (AMF) may improve the stress tolerance of plants. However, there is limited information on the systematic effects of AMF on phosphorus deficiency in S. davidii seedlings. We investigated the effects of three phosphorus levels (0.5, 0.25, 0 mmol/L) and two mycorrhizal inoculation (with Funneliformis mosseae and without Funneliformis mosseae) treatments on the growth and physiological performance of S. davidii using factorial design. The results showed that low-phosphorus stress significantly limited the growth of S. davidii seedlings and negatively affected their physiological properties. However, inoculation with F. mosseae significantly improved the plant height and shoot dry weight, promoted root growth, increased chlorophyll contents and osmoregulation substance contents, increased protective enzyme activity, and significantly reducing the accumulation of malondialdehyde, alleviated oxidative stress induced by low-phosphorus stress, improved the IAA and GA3 contents, and alleviated the negative effects of low-phosphorus stress. AMF-induced enhancement of aboveground growth and plant physiological characteristics is dependent on the P level and its impact on roots is regardless of phosphorus status. AMF inoculation significantly promoted the absorption of nitrogen and phosphorus in the roots (0.25- and 0-mmol/L treatments), thereby maintaining a higher biomass and relieving stress in S. davidii seedlings under low-phosphorus conditions. Our results demonstrated that AMF inoculation is useful for the promotion and cultivation of S. davidii in the karst area of Southwest China under low-phosphorus stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel Hamed Abdel Latef A, Hashem A, Rasool S, Fathi Abd E, Egamberdieva D et al (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol 59:407–426

    Article  CAS  Google Scholar 

  • Antunes PM, Franken P, Schwarz D, Matthias CR, Miranda H (2012) Linking soil biodiversity and human health: do arbuscular mycorrhizal fungi contribute to food nutrition? Oxford University Press

    Google Scholar 

  • Baghbani-Arani A, Modarres-Sanavy S, Poureisa M (2021) Improvement the soil physicochemical properties and fenugreek growth using zeolite and vermicompost under water deficit conditions. J Soil Sci Plant Nut 21:1213–1228

    Article  CAS  Google Scholar 

  • Bahadur A, Batool A, Nasir F, Jiang SJ, Qin MS et al (2019) Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci 20(17):4199. https://doi.org/10.3390/ijms20174199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao SD (2000) Soil agrochemical analysis, 3rd edn. China Agriculture Press, Beijing

    Google Scholar 

  • Benhiba L, Fouad MO, Essahibi A, Ghoulam C, Qaddoury A (2015) Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees 29(6):1725–1733

    Article  CAS  Google Scholar 

  • Blank LM (2012) The cell and P: from cellular function to biotechnological application. Curr Opin Biotech 23(6):846–851. https://doi.org/10.1016/j.copbio.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  • Campo S, Segundo BS (2020) Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants. SCI Rep-UK 10(1):15896

    Article  CAS  Google Scholar 

  • Cao X, Jia J, Zhang C, Li H, Liu T, Jiang X, Polle A, Peng C, Luo ZB (2014) Anatomical, physiological and transcriptional responses of two contrasting poplar genotypes to drought and re-watering. Physiol Plant 151:480–494

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Meng P, Feng H, Wang C (2020) Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei CA Mey. under drought stress. Forests 11(10):1117

    Article  Google Scholar 

  • Diao F, Dang Z, Cui X, Xu J, Guo W (2021) Transcriptomic analysis revealed distinctive modulations of arbuscular mycorrhizal fungi inoculation in halophyte Suaeda salsa under moderate salt conditions[J]. Environ Exp Bot 183:104337

    Article  CAS  Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161

    Article  Google Scholar 

  • Elahi F, Mridha M, Aminuzzaman F (2013) Role of AMF on plant growth, nutrient uptake, arsenic toxicity and chlorophyll content of chili grown in arsenic amended soil. Bangladesh J Agric Res 37(4):635–644

    Article  Google Scholar 

  • Elgharably A, Nafady NA (2021) Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere. https://doi.org/10.1016/j.rhisph.2021.100345

    Article  Google Scholar 

  • Feng Z, Liu X, Zhu H, Yao Q (2020) Responses of arbuscular mycorrhizal symbiosis to abiotic stress: a lipid-centric perspective. Front Plant Sci 11:578919

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao WQ, Lü LH, Srivastava AK, Wu QS, Kuca K (2020) Effects of mycorrhizae on physiological responses and relevant gene expression of peach affected by replant disease. Agronomy 10(2):186

    Article  CAS  Google Scholar 

  • Gaume A, Machler F, León CD, Narro L, Frossard E (2001) Low-P tolerance by maize (Zea mays L.) genotypes: Significanceof root growth, and organic acids and acidphosphatase root exudation. Plant Soil 228:253–264

    Article  CAS  Google Scholar 

  • Hailemariam M, Birhane E, Gebresamuel G, Gebrekiros A, Desta Y, Alemayehu A et al (2018) Arbuscular mycorrhiza effects on Faidherbia albida (Del.) A. Chev. growth under varying soil water and phosphorus levels in Northern Ethiopia. Agroforest Syst 92:485–498

    Google Scholar 

  • Jia TT, Wang J, Chang W, Fan XX, Sui X, Song FQ (2019) Proteomics analysis of E. angustifolia seedlings inoculated with arbuscular mycorrhizal fungi under salt stress. Int J Mol 20(3):788. https://doi.org/10.3390/ijms20030788

    Article  CAS  Google Scholar 

  • Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007) Phosphate starva-tion root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol 145(4):1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazadi AT, Lwalaba JLW, Ansey BK, Muzulukwau JM, Katabe GM, Karul MI, Baert G, Haesaert G, Mundende RPM (2022) Effect of phosphorus and arbuscular mycorrhizal fungi (AMF) inoculation on growth and productivity of maize (Zea mays L.) in a tropical ferralsol. Gesunde Pflanz 74:159–165. https://doi.org/10.1007/s10343-021-00598-8

    Article  CAS  Google Scholar 

  • Kumar V, Singh D, Sangwan P, Gill PK (2015) Management of environmental phosphorus pollution using phytases: current challenges and future prospects. Springer, India

    Google Scholar 

  • Kunio O, Koji C, Kiyoshi M (1997) Suitable level of nitrogen fertilizer for tea (Camellia sinensis L.) plants in relation to growth, photosynthesis, nitrogen uptake and accumulation of free amino acids. Jpn J Crop Sci 66(2):279–287

    Article  Google Scholar 

  • Li HS (2000) Principles and techniques of plant physiological biochemical experiment. Beijing

  • Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F et al (2011) Integrated soil and plant phosphorus management for crop and environment in China. A Rev Plant Soil 349:157–167

    Article  CAS  Google Scholar 

  • Lian H, Cheng Q, Li Z, Cong Z, Li H, Zhang S (2018) Lanthanum nitrate improves phosphorus-use efficiency and tolerance to phosphorus-deficiency stress in Vigna angularis seedlings. Protoplasma 256(2):383–392

    Article  PubMed  Google Scholar 

  • Liang Y, Pan F, Jiang Z, Li Q, Pu J, Liu K (2022) Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems. BMC Plant Biol 22(1):1–12

    Article  CAS  Google Scholar 

  • Liu WL, Zhang YL, Jiang SS, Deng Y, Christie P, Murray PJ, Li XL, Zhang JL (2016) Arbuscular mycorhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci Rep 6:24902. https://doi.org/10.1038/srep24902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Che Y, Wang L, Zhao Z, Zhang Y et al (2019) Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of Lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils. Chemosphere 235:32–39

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Liu XS, Zhang QB, Li SY, Aun YL, Lu WH, Ma CH (2020) Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Expr. https://doi.org/10.1186/s13568-020-01137-w

    Article  Google Scholar 

  • Liu TY, Hao L F, Bai S L, Wang Y L (2021) Ecoenzymatic stoichiometry and microbial nutrient limitation of shrub rhizosphere soils in response to arbuscular mycorrhizal fungi inoculation. J Soil Sediment: 1–13

  • Mathur S, Sharma MP, Jajoo A (2018) Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B Biol 180:149–154

    Article  CAS  Google Scholar 

  • Mei Y, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121(1):181–193

    Article  Google Scholar 

  • Nadira UA, Ahmed IM, Zeng JB, Bibi N, Cai SG et al (2014) The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress(Plant nutrition)[J]. Soil Sci Plant Nutr 60(6):832–842

    Article  CAS  Google Scholar 

  • Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EVJ (2013) Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. Fems Microbiol Ecol 85(1):37–50

    Article  PubMed  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Scotti MR, Carneiro NP et al (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Rafique M, Orta B, Rizwan M, Chaudhary H J, Munis M (2020) Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere, 238

  • Rubio V, Bustos R, Trigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J (2008) Plant hormones and nutrient signaling. Plant Mol Biol 69(4):361–373

    Article  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116(2):447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):587

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soumya PR, Singh D, Sharma S, Singh AM, Pandey R (2021) Evaluation of diverse wheat (Triticum aestivum) and triticale (× Triticosecale) genotypes for low phosphorus stress tolerance in soil and hydroponic conditions. J Soil Sci Plant Nut 21(2):1236–1251

    Article  CAS  Google Scholar 

  • Tarkowski P, Ge L, Yong JWH, Tan SN (2009) Analytical methods for cytokinins. Trends Anal Chem 28:323–335

    Article  CAS  Google Scholar 

  • Wang J, Qin Q, Pan J, Sun L, Song K (2019) Transcriptome analysis in roots and leaves of wheat seedlings in response to low-phosphorus stress. Sci Rep-UK 9(1):19802

    Article  CAS  Google Scholar 

  • Wissuwa M, Gonzalez D, Watts-Williams SJ (2020) The contribution of plant traits and soil microbes to phosphorus uptake from low-phosphorus soil in upland rice varieties. Plant Soil 448(1):523–537

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32(2):297–304

    Article  Google Scholar 

  • Wu QS, Srivastava AK, Li Y (2015) Effects of mycorrhizal symbiosis on growth behavior and carbohydrate metabolism of trifoliate orange under different substrate P levels. J Plant Growth Regul 34(3):499–508

    Article  Google Scholar 

  • Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Oshida KTY, Ma JF (2017) Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541:92–95

    Article  CAS  PubMed  Google Scholar 

  • Yang TC, Zhang YQ, Ma XX, Chen W, Dong L et al (2018) Screening genotypes and identifying indicators of different Fagopyrum tataricum varieties with low phosphorus toleranc. J Appl Ecol 29(9):2997–3007

    Google Scholar 

  • Ying C, Dan T, Jia L, Xu B, Jjya B et al (2021) Diversity and distribution of Sophora davidii rhizobia in habitats with different irradiances and soil traits in Loess Plateau area of China. Syst Appl Microbiol 44(4):126224

    Article  Google Scholar 

  • Zhang D, Liu C, Cheng H, Kan G, Cui S et al (2010) Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission. Plant Breeding 129:243–324

    Article  CAS  Google Scholar 

  • Zhang YK, Chen FJ, Chen XC, Long LZ, Gao K, Yuan LX, Zhang FS, Mi GH (2013) Genetic improvement of root growth contributes to efficient phosphorus acquisition in maize (Zea mays L.). J Integr Agr 12(6):1098–1111

    Article  Google Scholar 

  • Zhang W, Zhao J, Pan F, Li D, Chen H, Wang K (2015) Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant Soil 391:77–91

    Article  CAS  Google Scholar 

  • Zhang ZJ, Dong SW, Gao DD, Du XY, Xie YQ, Xia XS, Li RT (2021) Unusual matrine-adenine hybrids isolated from Sophora davidii and their inhibitory effects on human cytomegalovirus. Phytochemistry 190:112842–112842

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Huang L J, Zhao L L, Wang P C, Sun X F (2021) Transcriptome analysis of Sophora davidii leaves in response to low-phosphorus stress. J Plant Growth Regul 1–13

  • Zhao X, Huang LJ, Sun XF, Zhao LL, Wang PC (2022) Transcriptomic and metabolomic analyses reveal key metabolites, pathways and candidate genes in Sophora davidii (Franch.) skeels seedlings under drought stress. Front Plant Sci 13:1–19. https://doi.org/10.3389/fpls.2022.785702

    Article  Google Scholar 

Download references

Funding

This work was funded through projects of Science and Technology Project of Guizhou Province (QKHZC[2021]YB155, QKHPTRC[2021]5636, QKHJC[2020]1Z026) and the National Natural Science Foundation of China (32260340, 32060391).

Author information

Authors and Affiliations

Authors

Contributions

LLZ and PCW conceived and designed research. LTW, KKC, and HS conducted experiments. KKC, LTW, and PCW analyzed the data. LLZ, KKC, and LTW wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Pu-Chang Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Handling Editor: Nudrat Aisha Akram.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, LL., Wang, Lt., Chen, K. et al. Effects of Arbuscular Mycorrhizal Fungi on the Growth and Physiological Performance of Sophora davidii Seedling Under Low-Phosphorus Stress. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11273-3

Keywords

Navigation