Skip to main content
Log in

Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aquaculture witnessed a remarkable growth as one of the fastest-expanding sector in the food production industry; however, it faces serious threat from the unavoidable impacts of climate change. Understanding this threat, the present review explores the consequences of climate change on aquaculture production and provides need based strategies for its sustainable management, with a particular emphasis on climate-resilient approaches. The study examines the multi-dimensional impacts of climate change on aquaculture which includes the shifts in water temperature, sea-level rise, ocean acidification, harmful algal blooms, extreme weather events, and alterations in ecological dynamics. The review subsequently investigates innovative scientific interventions and climate-resilient aquaculture strategies aimed at strengthening the adaptive capacity of aquaculture practices. Some widely established solutions include selective breeding, species diversification, incorporation of ecosystem-based management practices, and the implementation of sustainable and advanced aquaculture systems (aquaponics and recirculating aquaculture systems (RAS). These strategies work towards fortifying aquaculture systems against climate-induced disturbances, thereby mitigating risks and ensuring sustained production. This review provides a detailed insight to the ongoing discourse on climate-resilient aquaculture, emphasizing an immediate need for prudent measures to secure the future sustainability of fish food production sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abisha R, Krishnani KK, Sukhdhane K, Verma AK, Brahmane M, Chadha NK (2022) Sustainable development of climate-resilient aquaculture and culture-based fisheries through adaptation of abiotic stresses: a review. J Water Clim Chang 13(7):2671–2689. https://doi.org/10.2166/wcc.2022.045

    Article  Google Scholar 

  • Adhikari S, Keshav CA, Barlaya G, Rathod R, Mandal RN, Ikmail S, Saha GS, De HK, Sivaraman I, Mahapatra AS, Sarkar S (2018) Adaptation and mitigation strategies of climate change impact in freshwater aquaculture in some states of India. J Fish Sci Com 12(1):16–21

    Google Scholar 

  • Afia OE, Iwatt IJ (2023) Impacts of flooding on the aquaculture sector. In: Ayandele IA, Udom GN, Effiong EO, Etuk UR, Ekpo IE, Inyang UG, Edet GE, Moffat I (eds) Contemporary discourse on Nigeria’s economic profile. A festschrift in honour of Prof. Nyaudoh, U. Ndaeyo. A publication of University of Uyo, Uyo, Akwa Ibom State, pp 333–340

  • Ahmed N, Turchini GM (2021) Recirculating aquaculture systems (RAS): environmental solution and climate change adaptation. J Clean Prod 297:126604. https://doi.org/10.1016/j.jclepro.2021.126604

    Article  Google Scholar 

  • Ahmed M, Stöckle CO, Nelson R, Higgins S (2017) Assessment of climate change and atmospheric CO2 impact on winter wheat in the Pacific Northwest using a multimodel ensemble. Front ecol evol 5:51. https://doi.org/10.3389/fevo.2017.00051

  • Ahmed N, Thompson S, Glaser M (2019) Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ Manage 63:159–172. https://doi.org/10.1007/s00267-018-1117-3

    Article  Google Scholar 

  • Akhtar MS, Pal AK, Sahu NP, Ciji A, Meena DK, Das P (2013) Physiological responses of dietary tryptophan fed Labeo rohita to temperature and salinity stress. J AnimPhysiolAnim Nutr (Berl) 97(6):1075–1083

    Article  CAS  Google Scholar 

  • Araguas RM, Sanz N, Pla C, Garcia-Marin JL (2004) Breakdown of the brown trout evolutionary history due to hybridization between native and cultivated fish. J Fish Biol 65:28–37

    Article  Google Scholar 

  • Asch RG, Stock CA, Sarmiento JL (2019) Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob Chang Biol 25(8):2544–2559. https://doi.org/10.1111/gcb.14650

    Article  Google Scholar 

  • Atalah J, Sanchez-Jerez P (2022) On the wrong track: sustainable and low-emission blue food diets to mitigate climate change. Front Sustain Food Syst 6:994840. https://doi.org/10.3389/fsufs.2022.994840

    Article  Google Scholar 

  • Badiola M, Basurko OC, Piedrahita R, Hundley P, Mendiola D (2018) Energy use in recirculating aquaculture systems (RAS): a review. AquacEng 81:57–70

    Google Scholar 

  • Barange M, Perry RI (2009) Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture. In: Cochrane K, De Young C, Soto D, Bahri T (eds) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper. No. 530. FAO, Rome, pp 7–106

    Google Scholar 

  • Basti L, Nagai K, Segawa S, Tanaka Y, Suzuk IT, Nagai S (2019) Harmful algal blooms and shellfish aquaculture in changing environment. Bull Jap Fish Res EduAgen 49:73–79. http://www.fra.affrc.go.jp/bulletin/b

  • Bell J, Batty M, Ganachaud A, Gehrke P, Hobday A, Hoegh-Guldberg O, Johnson J, Borgne RL, Lehodey P, Lough J, Pickering T, Pratchett M, Sheaves M, Waycott M (2010) Preliminary assessment of the effects of climate change on fisheries and aquaculture in the Pacific. In: Gillett R (ed) Fisheries in the Economies of the Pacific Island Countries and Territories. Pacific Studies Series. Asian Development Bank, Manila, pp 451–469

    Google Scholar 

  • Blanchard JL, Watson RA, Fulton EA, Cottrell RS, Nash KL, Bryndum-Buchholz A, Büchner M, Carozza DA, Cheung WW, Elliott J, Davidson LN (2017) Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat EcolEvol 1(9):1240–1249. https://doi.org/10.1038/s41559-017-0258-8

    Article  Google Scholar 

  • Bohnes FA, Hauschild MZ, Schlundt J, Nielsen M, Laurent A (2022) Environmental sustainability of future aquaculture production: analysis of Singaporean and Norwegian policies. Aquaculture 549:737717. https://doi.org/10.1016/j.aquaculture.2021.737717

    Article  Google Scholar 

  • Bosma RH, Nguyen TH, Siahainenia AJ, Tran HT, Tran HN (2016) Shrimp-based livelihoods in mangrove silvo-aquaculture farming systems. RevAquac 8(1):43–60. https://doi.org/10.1111/raq.12072

    Article  Google Scholar 

  • Boyd CE, McNevin AA, Davis RP (2022) The contribution of fisheries and aquaculture to the global protein supply. Food Secur 14(3):805–827. https://doi.org/10.1007/s12571-021-01246-9

    Article  Google Scholar 

  • Branch TA, DeJoseph BM, Ray LJ, Wagner CA (2013) Impacts of ocean acidification on marine seafood. Trends EcolEvol 28(3):178–186. https://doi.org/10.1016/j.tree.2012.10.001

    Article  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS (2018) Declining oxygen in the global ocean and coastal waters. Science 359(6371):7240. https://doi.org/10.1126/science.aam7240

    Article  CAS  Google Scholar 

  • Brodie J, Williamson CJ, Smale DA, Kamenos NA, Mieszkowska N, Santos R, Cunliffe M, Steinke M, Yesson C, Anderson KM, Asnaghi V (2014) The future of the northeast Atlantic benthic flora in a high CO 2 world. EcolEvol 4(13):2787–2798. https://doi.org/10.1002/ece3.1105

    Article  Google Scholar 

  • Bromage N, Porter M, Randall C (2001) The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197(1–4):63–98. https://doi.org/10.1016/S0044-8486(01)00583-X

    Article  CAS  Google Scholar 

  • Brown AR, Lilley M, Shutler J, Lowe C, Artioli Y, Torres R, Berdalet E, Tyler CR (2020) Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev Aquac 12(3):1663–1688. https://doi.org/10.1111/raq.12403

    Article  Google Scholar 

  • Bruneaux M, Visse M, Gross R, Pukk L, Saks L, Vasemägi A (2017) Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. FunctEcol 31(1):216–226. https://doi.org/10.1111/1365-2435.12701

    Article  Google Scholar 

  • Cao L, Halpern BS, Troell M, Short R, Zeng C, Jiang Z, Liu Y, Zou C, Liu C, Liu S, Liu X (2023) Vulnerability of blue foods to human-induced environmental change. Nat Sustain 1–13. https://doi.org/10.1038/s41893-023-01156-y

  • Carras MA, Knowler D, Pearce CM, Hamer A, Chopin T, Weaire T (2020) A discounted cash-flow analysis of salmon monoculture and Integrated Multi-Trophic Aquaculture in eastern Canada. Aquac EconManag 24(1):43–63. https://doi.org/10.1080/13657305.2019.1641572

    Article  Google Scholar 

  • Chakraborty SB, Hancz C (2011) Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Rev Aquac 3(3):103–19. https://doi.org/10.1111/j.1753-5131.2011.01048.x

    Article  Google Scholar 

  • Chiaramonte L, Munson D, Trushenski J (2016) Climate change and considerations for fish health and fish health professionals. Fisheries 41(7):396–399. https://doi.org/10.1080/03632415.2016.1182508

    Article  Google Scholar 

  •  Chuchird N, Limsuwan C, Prasertsri S, Limhang K, Supyoudkaew P (2009) Pacific white shrimp (Litopenaeus vannamei) culture for maximum profit: monoculture, mixed culture with giant freshwater prawn (Macrobrachium rosenbergii) in low salinity water. In: Proceedings of the 47th Kasetsart University Annual Conference, Kasetsart, 17- 20 March, 2009. Subject: Fisheries pp 412–418. Kasetsart University

  • Chung IK, Sondak CF, Beardall J (2017) The future of seaweed aquaculture in a rapidly changing world. European J Phycol 52(4):495–505. https://doi.org/10.1080/09670262.2017.1359678

    Article  CAS  Google Scholar 

  • Church JA, White NJ, Aarup T, Wilson WS, Woodworth PL, Domingues CM, Hunter JR, Lambeck K (2008) Understanding global sea levels: past, present and future. Sustain Sci 3:9–22. https://doi.org/10.1007/s11625-008-0042-4

    Article  Google Scholar 

  • Ciji A, Akhtar MS (2021) Stress management in aquaculture: a review of dietary interventions. Rev Aquac 13(4):2190–2247

    Article  Google Scholar 

  • Cochrane K, De Young C, Soto D, Bahri T (2009) Climate change implications for fisheries and aquaculture. FAO Fisheries and Aquaculture Technical Paper 530:212

    Google Scholar 

  • Collins C, Bresnan E, Brown L, Falconer L, Guilder J, Jones L, Kennerley A, Malham S, Murray A, Stanley M (2020) Impacts of climate change on aquaculture. MCCIP Sci Rev 2020:482–520. https://doi.org/10.14465/2020.arc21.aqu

  • Colombo SM, Roy K, Mraz J, Wan AH, Davies SJ, Tibbetts SM, Øverland M, Francis DS, Rocker MM, Gasco L, Spencer E (2023) Towards achieving circularity and sustainability in feeds for farmed blue foods. RevAquac 15(3):1115–1141. https://doi.org/10.1111/raq.12766

    Article  Google Scholar 

  • Cushing DH (1969) The regularity of the spawning season of some fishes. ICES J Mar Sci 33(1):81–92. https://doi.org/10.1093/icesjms/33.1.81

    Article  Google Scholar 

  •  Dabbadie L, Aguilar-Manjarrez J, Beveridge MC, Bueno PB, Ross LG, Soto D (2019) Effects of climate change on aquaculture: drivers, impacts and policies. Impacts of climate change on fisheries and aquaculture. FAO, pp 449–463

  • Dahms C, Killen SS (2023) Temperature change effects on marine fish range shifts: a meta-analysis of ecological and methodological predictors. Glob Change Biol 29(16):4459–79. https://doi.org/10.1111/gcb.16770

    Article  CAS  Google Scholar 

  • David LH, Pinho SM, Agostinho F, Costa JI, Portella MC, Keesman KJ, Garcia F (2022) Sustainability of urban aquaponics farms: an emergy point of view. J Clean Prod 331:129896. https://doi.org/10.1016/j.jclepro.2021.129896

    Article  Google Scholar 

  • De Silva SS, Soto D (2009) Climate change and aquaculture: potential impacts, adaptation and mitigation. Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fish Aquacult Techn Pap 530:151–212

    Google Scholar 

  • Deb AK, Haque CE (2016) Livelihood diversification as a climate change coping strategy adopted by small-scale fishers of Bangladesh. In: Leal Filho W, Musa H, Cavan G, O’Hare P, Seixas J (eds) Climate Change Adaptation, Resilience and Hazards Climate Change Management. Springer, Cham, pp 345–368

    Google Scholar 

  • Denton E, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within convolutional networks for efficient evaluation. In: 28th Annual Conference on Neural Information Processing Systems 2014, pp 1269–1277. Neural information processing systems foundation

  • Dervash MA, Yousuf A, Ozturk M, Bhat RA (2023) Global warming: impacts of temperature escalation. In: Dervash MA, Yousuf A, Ozturk M, Bhat RA (eds) Phytosequestration: strategies for mitigation of aerial carbon dioxide and aquatic nutrient pollution. Springer International Publishing, Cham, pp 27–36

    Chapter  Google Scholar 

  • Dey P, Mishra A (2017) Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J Hydrol 548:278–290. https://doi.org/10.1016/j.jhydrol.2017.03.014

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192. https://doi.org/10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  • Dubey R, Gunasekaran A, Papadopoulos T, Childe SJ, Shibin KT, Wamba SF (2017a) Sustainable supply chain management: framework and further research directions. J Clean Prod 142:1119–1130

    Article  Google Scholar 

  • Dubey SK, Trivedi RK, Chand BK, Mandal B, Rout SK (2017b) Farmers’ perceptions of climate change, impacts on freshwater aquaculture and adaptation strategies in climatic change hotspots: a case of the Indian Sundarban delta. Environ Dev 21:38–51. https://doi.org/10.1016/j.envdev.2016.12.002

    Article  Google Scholar 

  • Dumont B, Puillet L, Martin G, Savietto D, Aubin J, Ingrand S, Niderkorn V, Steinmetz L, Thomas M (2022) Incorporating diversity into animal production systems can increase their performance and strengthen their resilience. Front Sustain Food Syst 4:109. https://doi.org/10.3389/fsufs.2020.00109

    Article  Google Scholar 

  • Durant JM, Hjermann DO, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33(3):271–283. https://doi.org/10.3354/cr033271

    Article  Google Scholar 

  • Elayaraj B, Selvaraju M (2014) Studies on some physico-chemical parameters of cyanophycean members and correlation coefficient of eutrophic ponds in Chidambaram, Tamil Nadu, India. Int Lett Nat Sci 16:145–56

  • El-Sayed HS, Elshobary ME, Barakat KM, Khairy HM, El-Sheikh MA, Czaja R, Allam B, Senousy HH (2022) Ocean acidification induced changes in Ulvafasciata biochemistry may improve Dicentrarchuslabrax aquaculture via enhanced antimicrobial activity. Aquaculture 560:738474. https://doi.org/10.1016/j.aquaculture.2022.738474

    Article  CAS  Google Scholar 

  • Fakhraini MS, Wisnu W, Khathir R, Patria MP (2020) Carbon sequestration in macroalgae Kappaphycus striatum in seaweed aquaculture site, Alaang village, Alor Island, East Nusa Tenggara. In IOP Conf Ser: Earth Environ Sci 404(1):012044. https://doi.org/10.1088/1755-1315/404/1/012044

    Article  Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture. Sustainability in action, Rome

    Google Scholar 

  • FAO (2022) Food and Agriculture Organization, U N, State of the world fisheries and aquaculture, Rome 1–227

  • Farrant DN, Frank KL, Larsen AE (2021) Reuse and recycle: integrating aquaculture and agricultural systems to increase production and reduce nutrient pollution. Sci Total Environ 785:146859. https://doi.org/10.1016/j.scitotenv.2021.146859

    Article  CAS  Google Scholar 

  • Fawole FJ, Nazeemashahul S (2022) Strategies to mitigate climate change-imposed challenges in fish nutrition. In: Sinha A, Kumar S, Kumari K (eds) Outlook of climate change and fish nutrition. Springer, Singapore, pp 323–336. https://doi.org/10.1007/978-981-19-5500-6_21

    Chapter  Google Scholar 

  • Fawzy S, Osman AI, Doran J, Rooney DW (2020) Strategies for mitigation of climate change: a review. Environ ChemLett 18:2069–2094. https://doi.org/10.1007/s10311-020-01059-w

    Article  CAS  Google Scholar 

  • Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on fresh water fisheries. Rev Fish Biol Fisheries 17:581–613. https://doi.org/10.1007/s11160-007-9059-5

    Article  Google Scholar 

  • Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T, Beringer T, De Oliveira GW, Hartmann J, Khanna T, Luderer G (2018) Negative emissions—part 2: costs, potentials and side effects. Environ Res Lett 13(6):063002. https://doi.org/10.1088/1748-9326/aabf9f

    Article  CAS  Google Scholar 

  • Gabriel NN, Iitembu JA, Hasimuna OJ, Rashidian G, Mbokane EM, Moyo NA, Hlophe-Ginindza SN (2020) Medicinal plants: a perspective on their application in the African smallholder aquaculture farms. In: Mupambwa HA, Nciizah AD, Nyambo P, Muchara B, Gabriel NN (eds) Food security for african smallholder farmers. Sustainability Sciences in Asia and Africa. Springer, Singapore, pp 191–217. https://doi.org/10.1007/978-981-16-6771-8_12

    Chapter  Google Scholar 

  • Galbraith H, Jones R, Park R, Clough J, Herrod-Julius S, Harrington B, Page G (2002) Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25(2):173–183

    Article  Google Scholar 

  • Gao K, Beardall J (2022) Using macroalgae to address UN Sustainable Development goals through CO2 remediation and improvement of the aquaculture environment. Appl Phycol 3(1):360–7. https://doi.org/10.1080/26388081.2022.2025617

  • Gephart JA, Davis KF, Emery KA, Leach AM, Galloway JN, Pace ML (2016) The environmental cost of subsistence: optimizing diets to minimize footprints. Sci Total Environ 553:120–127. https://doi.org/10.1016/j.scitotenv.2016.02.050

    Article  CAS  Google Scholar 

  • Gephart JA, Henriksson PJ, Parker RW, Shepon A, Gorospe KD, Bergman K, Eshel G, Golden CD, Halpern BS, Hornborg S, Jonell M (2021) Environmental performance of blue foods. Nature 597(7876):360–5. https://doi.org/10.1038/s41586-021-03889-2

  • Glibert PM, Burkholder JM (2006) The complex relationships between increases in fertilization of the earth, coastal eutrophication and proliferation of harmful algal blooms. Ecology of Harmful Algae 189(1940):341–354

  • Go CO, Wekpe VE, Ikebude CF (2018) Impact of coastal flooding on fish production in brass, Niger Delta Nigeria, implication for coastal resource management. Oceanogr Fish Open Access J 6(1):5–20

    Google Scholar 

  • Gobler CJ (2020) Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91:101731. https://doi.org/10.1016/j.hal.2019.101731

    Article  Google Scholar 

  • Golden CD, Koehn JZ, Shepon A, Passarelli S, Free CM, Viana DF, Matthey H, Eurich JG, Gephart JA, Fluet-Chouinard E, Nyboer EA (2021) Aquatic foods to nourish nations. Nature 598(7880):315–320. https://doi.org/10.1038/s41586-021-03917-1

    Article  CAS  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan M, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. https://doi.org/10.1126/science.1132027

    Article  CAS  Google Scholar 

  • Griffith AW, Gobler CJ (2020) Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91:101590. https://doi.org/10.1016/j.hal.2019.03.008

    Article  Google Scholar 

  • Gubbins M, Bricknell I, Service M, (2013) Impacts of climate change on aquaculture. MCCIP Sci Rev 318–327. https://doi.org/10.14465/2013.arc33.318-327

  • Habibullah MS, Din BH, Tan SH, Zahid H (2022) Impact of climate change on biodiversity loss: global evidence. Environ Sci Pollut Res 29(1):1073–86. https://doi.org/10.1007/s11356-021-15702-8

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, d’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–952

    Article  CAS  Google Scholar 

  • Hamdan MA, Yamin J, Hafez EM (2012) Passive cooling roof design under Jordanian climate. Sustain Cities Soc 5:26–9

  • Hamdan R, Othman A, Kari F (2015) Climate change effects on aquaculture production performance in Malaysia: an environmental performance analysis. Int J Bus Soc 16:364–385. https://doi.org/10.33736/ijbs.573.2015

    Article  Google Scholar 

  • Handisyde NT, Ross LG, Badjeck MC, Allison EH (2006) The effects of climate change on world aquaculture: a global perspective. Aquaculture and Fish Genetics Research Programme, Stirling Institute of Aquaculture. Final Technical Report, DFID, Stirling. p 151

  • Haridas H, Sontakke R, Soman C (2021) Advances in climate resilient aquafarming practices. J Indian Soc Coast 39(1):17–24

    Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW (1999) Emerging marine diseases–climate links and anthropogenic factors. Science 285(5433):1505–1510. https://doi.org/10.1126/science.285.5433.1505

    Article  CAS  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296(5576):2158–2162. https://doi.org/10.1126/science.1063699

    Article  CAS  Google Scholar 

  • Herrera M, Mancera JM, Costas B (2019) The use of dietary additives in fish stress mitigation: comparative endocrine and physiological responses. Front Endocrinol 10:447

    Article  Google Scholar 

  • Ho CH, Chen JL, Nobuyuki Y, Lur HS, Lu HJ (2016) Mitigating uncertainty and enhancing resilience to climate change in the fisheries sector in Taiwan: policy implications for food security. Ocean Coast Manage 130:355–372. https://doi.org/10.1016/j.ocecoaman.2016.06.020

    Article  Google Scholar 

  • Hoseini SM, Gharavi B, Mirghaed AT, Hoseinifar SH, Van Doan H (2021) Effects of dietary phytol supplementation on growth performance, immunological parameters, antioxidant and stress responses to ammonia exposure in common carp, Cyprinus carpio (Linnaeus, 1758). Aquaculture 545:737151. https://doi.org/10.1016/j.aquaculture.2021.737151

    Article  CAS  Google Scholar 

  • Hu S (2022) Ocean acidification: what you need to know. NRDC https://www.nrdc.org/stories/ocean-acidification-what-you-need-know#what-is

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ (2018) Global warming transforms coral reef assemblages. Nature 556(7702):492–6. https://doi.org/10.1038/s41586-018-0041-2

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) The scientific basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, New York

    Google Scholar 

  • Iwamura T, Possingham HP, Chadès I, Minton C, Murray NJ, Rogers DI, Treml EA, Fuller RA (2013) Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proc R Soc B: Biol Sci 280(1761):20130325. https://doi.org/10.1098/rspb.2013.0325

    Article  Google Scholar 

  • James SJ, James CJFRI (2010) The food cold-chain and climate change. Food Res Int 43(7):1944–1956. https://doi.org/10.1016/j.foodres.2010.02.001

    Article  Google Scholar 

  • Jørgensen C, Dunlop ES, Opdal AF, Fiksen Ø (2008) The evolution of spawning migrations: state dependence and fishing-induced changes. Ecology 12:3436–3448. https://doi.org/10.1890/07-1469.1

    Article  Google Scholar 

  • Karvonen A, Rintamäki P, Jokela J, Valtonen ET (2010) Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. Int J Parasitol 40(13):1483–1488. https://doi.org/10.1016/j.ijpara.2010.04.015

    Article  Google Scholar 

  • Khalid A (2022) Climate change’s impact on aquaculture and consequences for sustainability. Acta Aquat Turc 18(3):426–435. https://doi.org/10.22392/actaquatr.1095421

    Article  Google Scholar 

  • Kibria G, Yousuf Haroon AK, (2017) Climate change impacts on wetlands of bangladesh, its biodiversity and ecology, and actions and programs to reduce risks. In: Prusty, B., Chandra R, Azeez P (eds) Wetland Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3715-0_10

  • Kibria G, Nugegoda D, Rose G, Haroon AY (2021) Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security. Mar Pollut Bull 167:112364. https://doi.org/10.1016/j.marpolbul.2021.112364

    Article  CAS  Google Scholar 

  • Koehn JZ, Allison EH, Golden CD, Hilborn R (2022) The role of seafood in sustainable diets. Environ ResLett 17(3):035003

    Google Scholar 

  • Kumar M, Padhy PK (2015) Environmental perspectives of pond ecosystems: global issues, services and Indianscenarios. Curr World Environ 10(3):848–67

  • Kundzewicz ZW, Mata LJ, Arnell NW, Doll P, Kabat P, Jimenez B, Miller K, Oki T, Zekai S, Shiklomanov I (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change: impacts, adaptation and vulnerability. contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 173–210

  • Lal J, Singh SK, Pawar L, Biswas P, Meitei MM, Meena DK (2023) Integrated multi-trophic aquaculture: a balanced ecosystem approach to blue revolution. In: Unni MR, Thomas S, Meena DK (eds) Sarathchandran. Advances in resting-state functional MRI. Woodhead Publishing, pp 513–535. https://doi.org/10.1016/B978-0-323-99145-2.00001-X

  • Lance QJ, Mu Y, Zhao Z, Lam VW, Sumaila UR (2017) Economic challenges to the generalization of integrated multi-trophic aquaculture: an empirical comparative study on kelp monoculture and kelp-mollusk polyculture in Weihai, China. Aquaculture 471:130–9. https://doi.org/10.1016/j.aquaculture.2017.01.015

    Article  Google Scholar 

  • Lemasson AJ, Hall-Spencer JM, Fletcher S, Provstgaard-Morys S, Knights AM (2018) Indications of future performance of native and non-native adult oysters under acidification and warming. Mar Environ Res 142:178–189. https://doi.org/10.1016/j.marenvres.2018.10.003

    Article  CAS  Google Scholar 

  • Leng P, Li Z, Zhang Q, Koschorreck M, Li F, Qiao Y, Xia J (2023) Deciphering large-scale spatial pattern and modulators of dissolved greenhouse gases (CO2, CH4, and N2O) along the Yangtze River, China. J Hydrol 623:129710. https://doi.org/10.1016/j.jhydrol.2023.129710

    Article  CAS  Google Scholar 

  • Lenzen M, Li M, Murray SA (2021) Impacts of harmful algal blooms on marine aquaculture in a low-carbon future. Harmful Algae 110:102143. https://doi.org/10.1016/j.hal.2021.102143

    Article  CAS  Google Scholar 

  • Lieke T, Meinelt T, Hoseinifar SH, Pan B, Straus DL, Steinberg CE (2020) Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev Aquac 12(2):943–965. https://doi.org/10.1111/raq.12365

    Article  Google Scholar 

  • Loo YY, Billa L, Singh A (2015) Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci Front 6(6):817–823. https://doi.org/10.1016/j.gsf.2014.02.009

    Article  Google Scholar 

  • Louis VR, Russek-Cohen E, Choopun N, Rivera IN, Gangle B, Jiang SC, Rubin A, Patz JA, Huq A, Colwell RR (2003) Predictability of vibrio cholerae in Chesapeake Bay. Appl Environ Microbiol 69(5):2773–2785. https://doi.org/10.1128/AEM.69.5.2773-2785.2003

    Article  CAS  Google Scholar 

  • MacNeill J, Winsemius P, Yakushiji T (1991) Beyond interdependence: the meshing of the world’s economy and the earth’s ecology. Oxford University Press, New York

    Google Scholar 

  • Marcogliese DJ (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech 27(2):467–484

    Article  CAS  Google Scholar 

  • Martin VAS, Gelcich S, VásquezLavín F, Ponce Oliva RD, Hernández JI, Lagos NA, Birchenough SN, Vargas (2019) Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci Rep 9(1):4719. https://doi.org/10.1038/s41598-019-41104-5

    Article  CAS  Google Scholar 

  • Martin P, Lampitt RS, Perry MJ, Sanders R, Lee C, D’Asaro E (2011) Export and mesopelagic particle flux during a North Atlantic spring diatom bloom. Deep-Sea Res I: Oceanogr Res 58(4):338–49. https://doi.org/10.1016/j.dsr.2011.01.006

    Article  Google Scholar 

  • Maulu S, Hasimuna OJ, Haambiya LH, Monde C, Musuka CG, Makorwa TH, Munganga BP, Phiri KJ, Nsekanabo JD (2021) Climate change effects on aquaculture production: sustainability implications, mitigation, and adaptations. Front Sustain Food Syst 5:609097. https://doi.org/10.3389/fsufs.2021.609097

    Article  Google Scholar 

  • McIlgorm A, Hanna S, Knapp G, Le F, Millerd F, Pan M (2010) How will climate change alter fishery governance? Insights from seven international case studies. Mar Policy 34:170–177. https://doi.org/10.1016/j.marpol.2009.06.004

    Article  Google Scholar 

  • Melero-Jiménez IJ, Martín-Clemente E, García-Sánchez MJ, Bañares-España E, Flores-Moya A (2020) The limit of resistance to salinity in the freshwater cyanobacterium Microcystisaeruginosa is modulated by the rate of salinity increase. Ecology and Evolution 10(11):5045–55. https://doi.org/10.1002/ece3.6257

    Article  Google Scholar 

  • Meynecke JO, Lee SY, Duke NC, Warnken J (2006) Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia. Estuar Coast Shelf Sci 69(3–4):491–504. https://doi.org/10.1016/j.ecss.2006.05.011

    Article  Google Scholar 

  • Milstein A, Ahmed AF, Masud OA, Kadir A, Wahab MA (2006) Effects of the filter feeder silver carp and the bottom feeders mrigal and common carp on small indigenous fish species (SIS) and pond ecology. Aquaculture 258(1–4):439–451. https://doi.org/10.1016/j.aquaculture.2006.04.045

    Article  Google Scholar 

  • Mir IN, Sahu NP, Pal AK, Makesh M (2017) Synergistic effect of l-methionine and fucoidan rich extract in eliciting growth and non-specific immune response of Labeo rohita fingerlings against Aeromonas hydrophila. Aquaculture 479:396–403

    Article  CAS  Google Scholar 

  • Miranda LA, Chalde T, Elisio M, Strüssmann CA (2013) Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerreyOdontesthesbonariensis. Gen Comp Endocrinol 192:45–54. https://doi.org/10.1016/j.ygcen.2013.02.034

    Article  CAS  Google Scholar 

  • Mitra A, Abdel-Gawad FK, Bassem S, Barua P, Assisi L, Parisi C, Temraz TA, Vangone R, Kajbaf K, Kumar V, Guerriero G (2023) Climate change and reproductive biocomplexity in fishes: innovative management approaches towards sustainability of fisheries and aquaculture. Water 15(4):725. https://doi.org/10.3390/w15040725

    Article  CAS  Google Scholar 

  • Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MC, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. PNAS 107(29):12930–4. https://doi.org/10.1073/pnas.1004519107

    Article  Google Scholar 

  • Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, Dangour AD, Huybers P (2017) Climate change and global food systems: potential impacts on food security and under nutrition. Annu Rev Public Health 38:259–277

    Article  Google Scholar 

  • Nag SK, Nandy SK, Roy K, Sarkar UK, Das BK (2019) Carbon balance of a sewage-fed aquaculture wetland. WetlEcolManag 27:311–322. https://doi.org/10.1007/s11273-019-09661-8

    Article  CAS  Google Scholar 

  • Nayak D, Shukla AK (2023) Review of state-of-the-art research on river hydrological hazards, restoration, and management. In: Pandey M, Azamathulla H, Pu JH (eds) River dynamics and flood hazards. Disaster resilience and green growth. pp 463–482. Springer, Singapore. https://doi.org/10.1007/978-981-19-7100-6_25 

  • Nelson KC, Palmer MA (2007) Stream temperature surges under urbanization and climate change: data, models, and responses1. J Am Water ResourAssoc 43(2):440–52. https://doi.org/10.1111/j.1752-1688.2007.00034.x

    Article  Google Scholar 

  • Nhan DK, Phong LT, Verdegem MJ, Duong LT, Bosma RH, Little DC (2007) Integrated freshwater aquaculture, crop and livestock production in the Mekong delta, Vietnam: determinants and the role of the pond. AgricSyst 94(2):445–58. https://doi.org/10.1016/j.agsy.2006.11.017

    Article  Google Scholar 

  • Nissar S, Bakhtiyar Y, Arafat MY, Andrabi S, Mir ZA, Khan NA, Langer S (2023) The evolution of integrated multi-trophic aquaculture in context of its design and components paving way to valorization via optimization and diversification. Aquaculture 565:739074. https://doi.org/10.1016/j.aquaculture.2022.739074

    Article  Google Scholar 

  • Olesen I, Myhr AI, Rosendal GK (2011) Sustainable aquaculture: are we getting there? Ethical perspectives on salmon farming. J Agric EnvironEthi 24:381–408. https://doi.org/10.1007/s10806-010-9269-z

    Article  Google Scholar 

  • Oliva RDP, Vasquez-Lavín F, San Martin VA, Hernández JI, Vargas CA, Gonzalez PS, Gelcich S (2019) Ocean acidification, consumers’ preferences, and market adaptation strategies in the mussel aquaculture industry. Ecol Econ 158:42–50. https://doi.org/10.1016/j.ecolecon.2018.12.011

    Article  Google Scholar 

  • Pandey A, Pathan MA, Ananthan PS, Sudhagar A, Krishnani KK, Sreedharan K, Kumar P, Thirunavukkarasar R, Harikrishna V (2023) Stocking for sustainable aqua-venture: optimal growth, yield and economic analysis of Penaeus vannamei culture in inland saline water (ISW) of India. Environ Dev Sustain 1–30. https://doi.org/10.1007/s10668-023-02993-9

  • Pankhurst NW, Munday PL (2011) Effects of climate change on fish reproduction and early life history stages. Mar Freshw Res 62(9):1015–1026. https://doi.org/10.1071/MF10269

    Article  CAS  Google Scholar 

  • Pankhurst NW, Porter MJR (2003) Cold and dark or warm and light: variations on the theme of environmental control of reproduction. Fish Physiol Biochem 28:385–389. https://doi.org/10.1023/B:FISH.0000030602.51939.50

    Article  CAS  Google Scholar 

  • Pant J, Demaine H, Edwards P (2004) Assessment of the aquaculture subsystem in integrated agriculture–aquaculture systems in Northeast Thailand. Aquac Res 35(3):289–98. https://doi.org/10.1111/j.1365-2109.2004.01014.x

    Article  Google Scholar 

  • Park JH, Duan L, Kim B, Mitchell MJ, Shibata H (2010) Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ Int 36(2):212–225. https://doi.org/10.1016/j.envint.2009.10.008

    Article  CAS  Google Scholar 

  • Parker RW, Blanchard JL, Gardner C, Green BS, Hartmann K, Tyedmers PH, Watson RA (2018) Fuel use and greenhouse gas emissions of world fisheries. Nature Clim Change 8(4):333–337. https://doi.org/10.1038/s41558-018-0117-x

    Article  CAS  Google Scholar 

  • Patel AB, Kumar G, Debbarma S, Mutum D, Debnath S, Yadav NK (2023) Live duckweed-based circular aquaculture for climate resilience and carbon footprint reduction of fed aquaculture. In: Sinha A, Kumar S, Kumari K (eds) Outlook of climate change and fish nutrition. Springer, Singapore, pp 337–351. https://doi.org/10.1007/978-981-19-5500-6_22

    Chapter  Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. MolEcol 22(4):925–946. https://doi.org/10.1111/mec.12152

    Article  Google Scholar 

  • Paz S, Bisharat N, Paz E, Kidar O, Cohen D (2007) Climate change and the emergence of Vibrio vulnificus disease in Israel. Environ Res 103(3):390–396. https://doi.org/10.1016/j.envres.2006.07.002

    Article  CAS  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308(5730):1912–1915. https://doi.org/10.1126/science.1111322

    Article  CAS  Google Scholar 

  • Piedrahita RH (2003) Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226(1–4):35–44. https://doi.org/10.1016/S0044-8486(03)00465-4

    Article  CAS  Google Scholar 

  • Piferrer F, Blázquez M, Navarro L, González A (2005) Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchuslabrax L.). Gen Comp Endocrinol 142(1–2):102–110. https://doi.org/10.1016/j.ygcen.2005.02.011

    Article  CAS  Google Scholar 

  • Pillay TV (2004) Aquaculture and the environment. John Wiley & Sons

    Book  Google Scholar 

  • Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360(6392):987–992. https://doi.org/10.1126/science.aaq0216

    Article  CAS  Google Scholar 

  • Power ME, Parker MS, Dietrich WE (2008) Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. EcolMonogr 78(2):263–82. https://doi.org/10.1890/06-0902.1

    Article  Google Scholar 

  • Ramli NM, Verreth JA, Yusoff FM, Nurulhuda K, Nagao N, Verdegem MC (2020) Integration of algae to improve nitrogenous waste management in recirculating aquaculture systems: a review. Front Bioeng Biotechnol 8:1004. https://doi.org/10.3389/fbioe.2020.01004

    Article  Google Scholar 

  • Reid GK, Gurney-Smith HJ, Flaherty M, Garber AF, Forster I, Brewer-Dalton K, Knowler D, Marcogliese DJ, Chopin T, Moccia RD, Smith CT (2019) Climate change and aquaculture: considering adaptation potential. Aquac Environ Interact 11:603–24. https://doi.org/10.3354/aei00333

    Article  Google Scholar 

  • Richards RG, Davidson AT, Meynecke JO, Beattie K, Hernaman V, Lynam T, Van Putten IE (2015) Effects and mitigations of ocean acidification on wild and aquaculture scallop and prawn fisheries in Queensland, Australia. Fish Res 161:42–56. https://doi.org/10.1016/j.fishres.2014.06.013

    Article  Google Scholar 

  • Roessig JM, Woodley CM, Cech JJ, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fisheries 14:251–275. https://doi.org/10.1007/s11160-004-6749-0

    Article  Google Scholar 

  • Rolton A, Rhodes L, Hutson KS, Biessy L, Bui T, MacKenzie L, Symonds JE, Smith KF (2022) Effects of harmful algal blooms on fish and shellfish species: a case study of New Zealand in a changing environment. Toxins 14(5):341. https://doi.org/10.3390/toxins14050341

    Article  CAS  Google Scholar 

  • Rose DJ, Hemery LG (2023) Methods for measuring carbon dioxide uptake and permanence: review and implications for macroalgae aquaculture. J Mar Sci Eng 11(1):175. https://doi.org/10.3390/jmse11010175

    Article  Google Scholar 

  • Royal Society (2018) Greenhouse gas removal. https://royalsociety.org/media/policy/projects/greenhouse-gas-removal/royal-society-greenhouse-gasremoval-report-2018.pdf. Accessed 28 Jan 2020

  • Ruby P, Ahilan B (2018) An overview of climate change impact in fisheries and aquaculture. Clim Change 4(13):87–94

    Google Scholar 

  • Rutkayová J, Vácha F, Maršálek M, Beneš K, Civišová H, Horká P, Petrášková E, Rost M, Šulista M (2018) Fish stock losses due to extreme floods–findings from pond-based aquaculture in the Czech Republic. J Flood Risk Manag 11(3):351–359

    Article  Google Scholar 

  • Sae-Lim P, Kause A, Mulder HA, Olesen I (2017) Breeding and genetics symposium: Climate change and selective breeding in aquaculture. J Anim Sci 95(4):1801–1812. https://doi.org/10.2527/jas.2016.1066

    Article  CAS  Google Scholar 

  • Saithong A, Satumanatpan S, Kanongdate K, Piyawongnarat T, Srisantear P (2022) Adaptiveness to enhance the sustainability of freshwater-aquaculture farmers to the environmental changes. Environ Nat Resour J 20(3):288–296

    Google Scholar 

  • Schewe J, Levermann A (2012) A statistically predictive model for future monsoon failure in India. Environmen Rese Lett 7(4):044023. https://doi.org/10.1088/1748-9326/7/4/044023

    Article  Google Scholar 

  • Servili A, Canario AV, Mouchel O, Muñoz-Cueto JA (2020) Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. Gen Comp Endocrinol 291:113439. https://doi.org/10.1016/j.ygcen.2020.113439

    Article  CAS  Google Scholar 

  • Sharma K, Pal AK, Sahu NP, Ayyappan S, Baruah K (2009) Dietary high protein and vitamin C mitigates endosulfan toxicity in the spotted murrel, Channapunctatus (Bloch, 1793). Sci Total Environ 407(12):3668–3673

    Article  Google Scholar 

  • Sonone SS, Jadhav S, Sankhla MS, Kumar R (2020) Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett Appl Nanobioscience 10(2):2148–2166

    Article  Google Scholar 

  • Soto J, Palenzuela JA, Galve JP, Luque JA, Azañón JM, Tamay J, Irigaray C (2019) Estimation of empirical rainfall thresholds for landslide triggering using partial duration series and their relation with climatic cycles. An application in southern Ecuador. Bull EngGeol Environ 78:1971–1987

    Article  Google Scholar 

  • Sreejariya P, Gallardo W, Dabbadie L (2011) The role of integrated multi-trophic aquaculture (IMTA) in climate change mitigation and adaptation. Asian Institute of Technology, Bangkok

    Google Scholar 

  • Stepien CC, Pfister CA, Wootton JT (2016) Functional traits for carbon access in macrophytes. PLoS ONE 11:e0159062. https://doi.org/10.1371/journal.pone.0159062

    Article  CAS  Google Scholar 

  • Sun Y (2023) Effects of ocean acidification on the marine organisms. Highl Sci Eng Technol 69:342–348. https://doi.org/10.54097/hset.v69i.12130

    Article  Google Scholar 

  • Takemura A, Rahman MS, Nakamura S, Park YJ, Takano K (2004) Lunar cycles and reproductive activity in reef fishes with particular attention to rabbit fishes. Fish Fish 5(4):317–328. https://doi.org/10.1111/j.1467-2679.2004.00164.x

    Article  Google Scholar 

  • Tigchelaar M, Cheung WW, Mohammed EY, Phillips MJ, Payne HJ, Selig ER, Wabnitz CC, Oyinlola MA, Frölicher TL, Gephart JA, Golden CD (2021) Compound climate risks threaten aquatic food system benefits. Nat Food 2(9):673–682. https://doi.org/10.1038/s43016-021-00368-9

    Article  Google Scholar 

  • Trainer VL, Moore SK, Hallegraeff G, Kudela RM, Clement A, Mardones JI, Cochlan WP (2020) Pelagic harmful algal blooms and climate change: lessons from nature’s experiments with extremes. Harmful algae 91:101591. https://doi.org/10.1016/j.hal.2019.03.009

    Article  Google Scholar 

  • Varghese T, SanalEbeneeza SA, Pal AK (2021) Mitigation of stress in fish through nutraceuticals. Dev J Aquac Res Dev 3(1):1014

    Google Scholar 

  • Velmurugan A, Ambast SK, Swarnam TP, Burman D, Mandal S, Subramani T (2018) Land shaping methods for climate change adaptation in coastal and island region. In: Biodiversity and Climate Change Adaptation in Tropical Islands. Academic Press, pp 577–596. https://doi.org/10.1016/B978-0-12-813064-3.00021-1

  • Vergés A, McCosker E, Mayer-Pinto M, Coleman MA, Wernberg T, Ainsworth T, Steinberg PD (2019) Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct Ecol 33(6):1000–13. https://doi.org/10.1111/1365-2435.13310

    Article  Google Scholar 

  • Vinagre C, Santos FD, Cabral HN, Costa MJ (2009) Impact of climate and hydrology on juvenile fish recruitment towards estuarine nursery grounds in the context of climate change. Estuar Coast Shelf Sci 85(3):479–486. https://doi.org/10.1016/j.ecss.2009.09.013

    Article  Google Scholar 

  • Wahab MA, Kadir A, Milstein A, Kunda M (2011) Manipulation of species combination for enhancing fish production in polyculture systems involving major carps and small indigenous fish species. Aquaculture 321(3–4):289–297. https://doi.org/10.1016/j.aquaculture.2011.09.020

    Article  Google Scholar 

  • Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. EcolSoc 9(2):5

    Google Scholar 

  • Ward JR, Lafferty KD (2004) The elusive baseline of marine disease: are diseases in ocean ecosystems increasing? PLoS Biol 2(4):120. https://doi.org/10.1371/journal.pbio.0020120

    Article  Google Scholar 

  • Weitzman J (2019) Applying the ecosystem services concept to aquaculture: a review of approaches, definitions, and uses. EcosystServ 35:194–206. https://doi.org/10.1016/j.ecoser.2018.12.009

    Article  Google Scholar 

  • Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271. https://doi.org/10.3354/meps09185

    Article  CAS  Google Scholar 

  • Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, Jonell M (2019) Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The lancet 393(10170):447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

    Article  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B: Biol Sci 365(1549):2093–2106

    Article  Google Scholar 

  • Xu X, Sharma P, Shu S, Lin TS, Ciais P, Tubiello FN, Smith P, Campbell N, Jain AK (2021) Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat Food 2(9):724–32. https://doi.org/10.1038/s43016-021-00358-x

    Article  CAS  Google Scholar 

  • Yadav NK, Singh SK, Patel AB, Meitei MM, Meena DK, Yadav MK, Lal J, Choudhary BK (2023) Biochar production methods vis-a-vis aquaculture applications: a strategy for sustainable paradigm. In: Sarathchandran, Unni MR, Thomas S, Meena DK (eds) Advances in resting-state functional MRI. pp 537–559. https://doi.org/10.1016/B978-0-323-99145-2.00010-0

  • Yamamoto Y, Hattori RS, Patiño R, Strüssmann CA (2019) Environmental regulation of sex determination in fishes: Insights from Atheriniformes. Curr Top DevBiol 134:49–69

    Article  CAS  Google Scholar 

  • Yazdi KS, Shakouri B (2010) The effects of climate change on aquaculture. Int J Environ Sci Dev 1(5):378

    Article  Google Scholar 

  • Zhang P, Zhao T, Zhou L, Han G, Shen Y, Ke C (2019) Thermal tolerance traits of the undulated surf clam Paphiaundulata based on heart rate and physiological energetics. Aquaculture 498:343–350. https://doi.org/10.1016/j.aquaculture.2018.08.037

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Voice Chancellor, Central Agriculture University (CAU), Imphal and the Dean, College of Fisheries, Central Agriculture University (Imphal), Tripura.

Author information

Authors and Affiliations

Authors

Contributions

The final manuscript was read and approved by all authors. The manuscript was conceptualized and written by all the authors. The authors specific roles are as follows: conceptualization: Nitesh Kumar Yadav, Arun Bhai Patel, Soibam Khogen Singh, and Naresh Kumar Mehta; review: Nitesh Kumar Yadav, Vishwajeet Anand, Jham Lal, Debojit Dekri, and Ng Chinglembi Devi; draft and review editing: Arun Bhai Patel, Soibam Khogen Singh, and Naresh Kumar Mehta.

Corresponding author

Correspondence to Nitesh Kumar Yadav.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N.K., Patel, A.B., Singh, S.K. et al. Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: a review. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-33397-5

Keywords

Navigation