Skip to main content
Log in

Fabrication of Tremella-Like Zn-Based Composite Coating with Improved Photocatalytic Degradation Performance and Robust Superhydrophobicity

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this paper, as-received Zn powder and as-prepared Zn@(ZnWO4/ZnO) core–shell powder were used as feedstocks for plasma spraying to prepare Zn-based composite coatings and nano-ZnO was co-deposited by chemical vapor deposition induced by plasma spraying. The composition and morphology were controllable within certain range by plasma spraying power. The photocatalytic activities of the coatings were analyzed by the degradation efficiency of methyl orange (MO) solution. It was found the photocatalytic activity can be improved with ZnWO4 decoration. The Zn/ZnO/ZnWO4 coating which presented tremella-like surface morphology was testified to have the best photocatalytic activity under UV light irradiation among all coatings. On the other hand, the chemical surface modification with 1H,1H,1H,2H-perfluorodecyltriethoxysilane (FAS-17) was implemented to produce superhydrophobic coatings. Among all modified coatings, the ZnWO4-containing coating with tremella-like surface structure presented the best superhydrophobicity. By the cyclic wetting and tape adhesion experiments, the tremella-like structure was proved to make a great improvement on the robustness of the Zn-based superhydrophobic coatings. The superhydrophobic and photocatalytic properties provide the possibility for the application of the coating in the fields of antifouling, antibacterial, and photocatalytic degradation of organics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.L. Martinez, Environmental Pollution by Antibiotics and by Antibiotic Resistance Determinants, Environ. Pollut., 2009, 157, p 2893-2902.

    Article  CAS  PubMed  Google Scholar 

  2. I. Sirés, and E. Brillas, Remediation of Water Pollution Caused by Pharmaceutical Residues Based on Electrochemical Separation and Degradation Technologies: A Review, Environ. Int., 2012, 40, p 212-229.

    Article  PubMed  Google Scholar 

  3. E. de Lucas-Gil, P. Leret, M. Monte-Serrano, J.J. Reinosa, E. Enríquez, A. Del Campo, M. Cañete, J. Menéndez, J.F. Fernández and F. Rubio-Marcos, ZnO Nanoporous Spheres with Broad-Spectrum Antimicrobial Activity by Physicochemical Interactions, ACS App. Nano Mater., 2018, 1, p 3214-3225.

    Article  Google Scholar 

  4. B. Boutra, N. Guy, M. Ozacar and M. Trari, Magnetically Separable MnFe2O4/TA/ZnO Nanocomposites for Photocatalytic Degradation of Congo Red Under Visible Light, J. Magn. Mater., 2020, 497, p 165994.

    Article  CAS  Google Scholar 

  5. Z. Yu, H. Moussa, M. Liu, R. Schneider, W. Wang, M. Moliere and H. Liao, Development of Photocatalytically Active Heterostructured MnO/ZnO and CuO/ZnO Films via Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2019, 371, p 107-116.

    Article  CAS  Google Scholar 

  6. Z. Yu, H. Moussa, M. Liu, R. Schneider, M. Moliere and H. Liao, Solution Precursor Plasma Spray Process as an Alternative Rapid One-Step Route for the Development of Hierarchical ZnO Films for Improved Photocatalytic Degradation, Ceram. Int., 2018, 44, p 2085-2092.

    Article  CAS  Google Scholar 

  7. Z. Yu, H. Moussa, M. Liu, B. Chouchene, R. Schneider, W. Wang, M. Moliere and H. Liao, Tunable Morphologies of ZnO Films Via the Solution Precursor Plasma Spray Process for Improved Photocatalytic Degradation Performance, Appl. Surf. Sci., 2018, 455, p 970-979.

    Article  CAS  Google Scholar 

  8. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan and D. Mohamad, Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, Nano-Micro Lett., 2015, 7, p 219-242.

    Article  CAS  Google Scholar 

  9. V. Lakshmi Prasanna, and R. Vijayaraghavan, Insight Into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark, Langmuir, 2015, 31, p 9155-9162.

    Article  CAS  PubMed  Google Scholar 

  10. P. Panchal, D.R. Paul, A. Sharma, P. Choudhary, P. Meena and S.P. Nehra, Biogenic Mediated Ag/ZnO Nanocomposites for Photocatalytic and Antibacterial Activities Towards Disinfection of Water, J. Colloid Interface Sci., 2020, 563, p 370-380.

    Article  CAS  PubMed  Google Scholar 

  11. B. Mandal, A. Biswas, Aaryashree, D.S. Sharma, R. Bhardwaj, M. Das, M.A. Rahman, S. Kuriakose, M. Bhaskaran, S. Sriram and M. Than Htay, π-Conjugated Amine-ZnO Nanohybrids for the Selective Detection of CO2 Gas at Room Temperature, ACS Appl. Nano Mater., 2018, 1, p 6912-6921.

    Article  CAS  Google Scholar 

  12. S. Prabhu, M. Pudukudy, S. Harish, M. Navaneethan, S. Sohila, K. Murugesan and R. Ramesh, Facile Construction of Djembe-Like ZnO and its Composite with g-C3N4 as a Visible-Light-Driven Heterojunction Photocatalyst for the Degradation of Organic Dyes, Mater. Sci. Semicond. Process., 2020, 106, p 2311-2321.

    Article  Google Scholar 

  13. Z. Yu, B. Chouchene, M. Liu, H. Moussa, R. Schneider, M. Moliere, H. Liao, Y. Chen and L. Sun, Influence of Laminated Architectures of Heterostructured CeO2-ZnO and Fe2O3-ZnO Films on Photodegradation Performances, Surf. Coat. Technol., 2020, 403, p 126367.

    Article  CAS  Google Scholar 

  14. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade and A.Z. Moshfegh, Recent Progress on doped Zno Nanostructures for Visible-Light Photocatalysis, Thin Solid Films, 2016, 605, p 2-19.

    Article  CAS  Google Scholar 

  15. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis, Inorg. Chem., 2007, 46, p 6980-6986.

    Article  CAS  PubMed  Google Scholar 

  16. T.K. Pathak, R.E. Kroon and H.C. Swart, Photocatalytic and Biological Applications of Ag and Au Doped ZnO Nanomaterial Synthesized by Combustion, Vacuum, 2018, 157, p 508-513.

    Article  CAS  Google Scholar 

  17. Z. Yu, H. Moussa, M. Liu, R. Schneider and H. Liao, Heterostructured Metal Oxides-ZnO Nanorods Films Prepared by SPPS Route for Photodegradation Applications, Surf. Coat. Technol., 2019, 375, p 670-680.

    Article  CAS  Google Scholar 

  18. D. Ma, J. Shi, D. Sun, Y. Zou, L. Cheng, C. He, H. Wang, C. Niu and L. Wang, Au Decorated Hollow ZnO@ZnS Heterostructure for Enhanced Photocatalytic Hydrogen Evolution: The Insight into the Roles of Hollow Channel and Au Nanoparticles, Appl. Catal. B-Environ., 2019, 244, p 748-757.

    Article  CAS  Google Scholar 

  19. M. Basu, N. Garg and A.K. Ganguli, A Type-II Semiconductor (ZnO/CuS Heterostructure) for Visible Light Photocatalysis, J. Mater. Chem. A, 2014, 2, p 7517-7525.

    Article  CAS  Google Scholar 

  20. K.T.G. Carvalho, O.F. Lopes, D.C. Ferreira and C. Ribeiro, ZnO: ZnWO4 Heterostructure with Enhanced Photocatalytic Activity for Pollutant Degradation in Liquid and Gas Phases, J. Alloy. Compd., 2019, 797, p 1299-1309.

    Article  CAS  Google Scholar 

  21. Y. Hao, L. Zhang, Y. Zhang, L. Zhao and B. Zhang, Synthesis of Pearl Necklace-Like ZnO-ZnWO4 Heterojunctions with Enhanced Photocatalytic Degradation of Rhodamine B, RSC Adv., 2017, 7, p 26179-26184.

    Article  CAS  Google Scholar 

  22. D.P. Ojha, and H.J. Kim, Investigation of Photocatalytic Activity of ZnO Promoted Hydrothermally Synthesized ZnWO4 Nanorods in UV-Visible Light Irradiation, Chen. Eng. Sci., 2020, 212, p 115338.

    Article  CAS  Google Scholar 

  23. S. Wannapop, and A. Somdee, Effect of Citric Acid on the Synthesis of ZnWO4/ZnO Nanorods for Photoelectrochemical Water Splitting, Inorg. Chem., 2020, 115, p 107857.

    CAS  Google Scholar 

  24. Y. Chen, Z. Ji, J. Lian, H. Zhou, X. Shen, L. Kong and A. Yuan, Facile Construction of ZnWO4/ZnO Porous Nanoplates on Reduced Graphene Oxide for Superior Lithium Storage, J. Collold. Interf. Sci., 2024, 654, p 1199-1208.

    Article  CAS  Google Scholar 

  25. D. Lin, H. Wu, R. Zhang and W. Pan, Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers, Chem. Mater., 2009, 21, p 3479-3484.

    Article  CAS  Google Scholar 

  26. M. Ratova, P.J. Kelly and G.T. West, Superhydrophobic Photocatalytic PTFE-Titania Coatings Deposited by Reactive pDC Magnetron Sputtering from a Blended Powder Target, Mater. Chem. Phys., 2017, 190, p 108-113.

    Article  CAS  Google Scholar 

  27. I. El Saliby, L. Erdei, J. Kim and H.K. Shon, Adsorption and Photocatalytic Degradation of Methylene Blue Over Hydrogen-Titanate Nanofibres Produced by a Peroxide Method, Water Res., 2013, 47, p 4115-4125.

    Article  PubMed  Google Scholar 

  28. H.A.J.L. Mourão, A.R. Malagutti and C. Ribeiro, Synthesis of TiO2-Coated CoFe2O4 Photocatalysts Applied to the Photodegradation of Atrazine and Rhodamine B in Water, Appl. Catal. A-Gen., 2010, 382, p 284-292.

    Article  Google Scholar 

  29. X. Li, G. Chen, L. Yang, Z. Jin and J. Liu, Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection, Adv. Funct. Mater., 2010, 20, p 2815-2824.

    Article  CAS  Google Scholar 

  30. C.R. Crick, J.C. Bear, A. Kafizas and I.P. Parkin, Superhydrophobic Photocatalytic Surfaces Through Direct Incorporation of Titania Nanoparticles Into a Polymer Matrix by Aerosol Assisted Chemical Vapor Deposition, Adv. Mater., 2012, 24, p 3505-3508.

    Article  CAS  PubMed  Google Scholar 

  31. N. Yoshida, M. Takeuchi, T. Okura, H. Monma, M. Wakamura, H. Ohsaki and T. Watanabe, Super-Hydrophobic Photocatalytic Coatings Utilizing Apatite-Based Photocatalyst, Thin Solid Films, 2006, 502, p 108-111.

    Article  CAS  Google Scholar 

  32. A. Gupta, K. Mondal, A. Sharma and S. Bhattacharya, Superhydrophobic Polymethylsilsesquioxane Pinned One Dimensional ZnO Nanostructures for Water Remediation Through Photo-Catalysis, Rsc Adv., 2015, 5, p 45897-45907.

    Article  CAS  Google Scholar 

  33. L. Bai, X. Wang, X. Sun, J. Li, L. Huang, H. Sun and X. Gao, Enhanced Superhydrophobicity of Electrospun Carbon Nanofiber Membranes by Hydrothermal Growth of ZnO Nanorods for Oil–Water Separation, Arab. J. Chem., 2023, 16, p 104523.

    Article  CAS  Google Scholar 

  34. Y. Liu, L. Zhang, J. Hu, B. Cheng, J. Yao, Y. Huang and H. Yang, Facile Preparation of a Robust, Transparent Superhydrophobic ZnO Coating with Self-cleaning, UV-Blocking and Bacterial Anti-Adhesion Properties, Surf. Coat. Tech., 2024, 477, p 130352.

    Article  CAS  Google Scholar 

  35. H. Zhou, S. Yan, Y. He, Y. Xiang, H. Li, R. Song and J. Shangguan, Superhydrophobic Surface Based on Micro/Nano Structured ZnO Nanosheets for High-Efficiency Anticorrosion, J. Solid. State. Electr., 2022, 26, p 2515-2525.

    Article  CAS  Google Scholar 

  36. M. Zhang, T. Zhou, H. Li and Q. Liu, UV-Durable Superhydrophobic ZnO/SiO2 Nanorod Arrays on an Aluminum Substrate Using Catalyst-Free Chemical Vapor Deposition and Their Corrosion Performance, Appl. Surf. Sci., 2023, 623, p 157085.

    Article  CAS  Google Scholar 

  37. R. Liao, C. Li, Y. Yuan, Y. Duan and A. Zhuang, Anti-Icing Performance of ZnO/SiO2/PTFE Sandwich-Nanostructure 0superhydrophobic Film on Glass Prepared Via RF Magnetron Sputtering, Mater. Lett., 2017, 206, p 109-112.

    Article  CAS  Google Scholar 

  38. G. Li, B. Wang, Y. Liu, T. Tan, X. Song and H. Yan, Fabrication of Superhydrophobic ZnO/Zn Surface with Nanowires and Nanobelts Structures Using Novel Plasma Assisted Thermal Vapor Deposition, Appl. Surf. Sci., 2008, 255, p 3112-3116.

    Article  CAS  Google Scholar 

  39. B. Wang, L. Gui, R. Cai, Z. Yu, P. Xu, M. Liu and L. Xie, Cost-Effective Superhydrophobic ZnO Films with Adjustable Wetting Behaviors Deposited Via Solution Precursor Plasma Spray Process, Surf. Coat. Tech., 2024, 478, p 130454.

    Article  CAS  Google Scholar 

  40. H. Huang, Y. An, X. Hu, D. Wu, H. Cao, X. Zhang, J. Qiao and H. Liu, A Plasma Sprayed Superhydrophobic Coating Prepared with Al@WO3 Core–Shell Powder and Photocatalytic Degradation Performance, Surf. Coat. Technol., 2019, 369, p 105-115.

    Article  CAS  Google Scholar 

  41. Y. Fan, H. Liu, B. Xia, W. Zhu, K. Guo and J. Li, A Facile and Gentle Method to Fabricate Amorphous WO3 Coatings with Superamphiphobic Character Study, Mater. Lett., 2017, 194, p 81-85.

    Article  CAS  Google Scholar 

  42. J. Qiao, X. Jin, J. Qin, H. Liu, Y. Luo and D. Zhang, A Super-Hard Superhydrophobic Fe-Based Amorphous Alloy Coating, Surf. Coat. Technol., 2018, 334, p 286-291.

    Article  CAS  Google Scholar 

  43. D. Rani Rosaline, S.S.R. Inbanathan, A. Suganthi, M. Rajarajan, G. Kavitha, R. Srinivasan, H.H. Hegazy, A. Umar, H. Algarni and E. Manikandan, Visible-Light Driven Photocatalytic Degradation of eosin Yellow (EY) dYe Based on NiO-WO3 Nanoparticles, J. Nanosci. Nanotechno., 2020, 20, p 924-933.

    Article  CAS  Google Scholar 

  44. C. Wang, J. Zhao, X. Wang, B.X. Mai, G. Sheng, P. Peng and J. Fu, Preparation, Characterization and Photocatalytic Activity of Nano-Sized ZnO/SnO2 Coupled Photocatalysts, Appl. Catal. B-Environ., 2002, 39, p 269-279.

    Article  CAS  Google Scholar 

  45. J. Kima, C. Leea, V. Arepallia, S. Kima, W. Leeb and Y. Chung, Role of Hydrazine in the Enhanced Growth of Zinc Sulfide Thin Films Using Chemical Bath Deposition for Cu(In, Ga)Se2 Solar Cell Application, Mat. Sci. Semicon. Proc., 2020, 105, p 104729.

    Article  Google Scholar 

  46. J. Li, W. Pan and M. Zhang, Vapor Deposited CeO2 Nanostructures by Atmospheric Plasma Spray with Reversible Wettability, Mat. Lett., 2023, 238, p 134691.

    Article  Google Scholar 

  47. P. Yang, H. Yan, M. Samuel, R. Richard, J. Justin, S. Richard, M. Nathan, P. Johnny, R. He and H.J. Choi, Controlled Growth of ZnO Nanowires and Their Optical Properties, Adv. Funct. Mater., 2010, 12, p 323-331.

    Article  Google Scholar 

  48. L. Wallenhorst, L. Gurău, A. Gellerich, H. Militz, G. Ohms and W. Viöl, UV-Blocking Properties of Zn/ZnO Coatings on Wood Deposited by Cold Plasma Spraying at Atmospheric Pressure, Appl. Surf. Sci., 2018, 434, p 1183-1192.

    Article  CAS  Google Scholar 

  49. X. Zhou, D. Liu, H. Bu, L. Deng, H. Liu, P. Yuan, P. Du and H. Song, XRD-Based Quantitative Analysis of Clay Minerals Using Reference Intensity Ratios, Mineral Intensity Factors, Rietveld, and Full Pattern Summation Methods: A Critical Review, Solid Earth Sci., 2018, 3, p 16-29.

    Google Scholar 

  50. H. Zhuang, W. Xu, L. Lin, M. Huang, M. Xu, S. Chen and Z. Cai, Construction of One Dimensional ZnWO4@SnWO4 Core–Shell Heterostructure for Boosted Photocatalytic Performance, J. Mater. Sci. Technol., 2019, 35, p 2312-2318.

    Article  CAS  Google Scholar 

  51. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, R. Rajajeyaganthan, M. Arunpandian, J.N. Gopal and T.K. Thirumalaisamy, Surfactants-Assisted Synthesis of ZnWO4 Nanostructures: A View on Photocatalysis, Photoluminescence and Electron Density Distribution Analysis, Mater Charact, 2020, 159, p 3315-3329.

    Article  Google Scholar 

  52. Z. Jabbar, B. Graimed, S. Ammar, D. Sabit, A. Najim, A. Radeef and A. Taher, The Latest Progress in the Design and Application of Semiconductor Photocatalysis Systems for Degradation of Environmental Pollutants in Wastewater: Mechanism Insight and Theoretical Calculations, Mat. Sci. Semicon. Proc., 2024, 173, p 108153.

    Article  CAS  Google Scholar 

  53. K.N. Abbas, R.S. Sabry, R.A. Alkareem, E.H. Hussein, S. Islam, N. Bidin and A.M. Abbas, Hydrophobic Effect Evolution Dependent Manipulation of ZnO Nanostructures Morphology, J. Aust. Ceram. Soc., 2020, 261, p 1377-1384.

    Article  Google Scholar 

  54. H. Liu, D. Liu, P. Li, Y. Zeng and H. Jin, Direct Observation of the Wetting State of Cassie and Wenzel, Mater. Lett., 2023, 340, p 134182.

    Article  CAS  Google Scholar 

  55. K.A. Wier, L. Gao and T.J. McCarthy, Two-Dimensional Fluidics Based on Differential Lyophobicity and Gravity, Langmuir, 2006, 22, p 4914-4916.

    Article  CAS  PubMed  Google Scholar 

  56. W. Charles, and Y. Kumagai, Liquid Drops on an Inclined Plane: The Relation between Contact Angles, Drop Shape, and Retentive Force, J. Colloid Interface Sci., 1995, 170, p 515-521.

    Article  Google Scholar 

  57. A.I. ElSherbini, and A.M. Jacobi, Liquid Drops on Vertical and Inclined Surfaces I. An Experimental Study of Drop Geometry, J. Colloid Interface Sci., 2004, 273, p 556-565.

    Article  CAS  PubMed  Google Scholar 

  58. N. Saleema, D.K. Sarkar, D. Gallant, R.W. Paynter and X.-G. Chen, Chemical Nature of Superhydrophobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium, ACS Appl. Mater. Interfaces, 2011, 3, p 4775-4781.

    Article  CAS  PubMed  Google Scholar 

  59. P. Rodič, I. Milošev, M. Lekka, F. Andreatta and L. Fedrizzi, Corrosion Behaviour and Chemical Stability of Transparent Hybrid Sol-Gel Coatings Deposited on Aluminium in Acidic and Alkaline Solutions, Prog. Org. Coat., 2018, 124, p 286-295.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant No. 52175204) and Research Innovation Program for College Graduates of Jiangsu Province (No. 202310290197Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-hao Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ll., Ma, Wc., Liu, Yc. et al. Fabrication of Tremella-Like Zn-Based Composite Coating with Improved Photocatalytic Degradation Performance and Robust Superhydrophobicity. J Therm Spray Tech (2024). https://doi.org/10.1007/s11666-024-01770-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11666-024-01770-y

Keywords

Navigation