Skip to main content
Log in

Effects of Phosphate Salts and Hydrocolloids on Rheological, Microstructural, and Cooking Properties of Dough Sheets During Boiling Process

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this study, the influence on the dough sheet’s overall quality induced by phosphate salts and hydrocolloids was evaluated. To clarify the internal structure of wheat dough, thermomechanical and rheological properties were performed on the dough, whereas the texture and cooking properties were evaluated on dough sheets. Results from the mixolab analysis showed a linear relationship between the content of hydrocolloids and phosphate salts (ranging from 0.1–0.7%) and key parameters, including gluten strength (C2), starch gelatinization (C3), and dough stability. These results were consistent with rheological measurement for storage G’ and loss G” moduli. The power-law model indicated that the dough possessed stronger and slower relaxation properties. The addition of sodium pyrophosphate and xanthan notably enhanced the hardness, springiness, and chewiness of texture properties. Microstructural analysis revealed that the internal molecules of dough sheets exhibited tighter interaction, resulting in low porosity and continuous network. Our study highlights the essential role of phosphate salts and hydrocolloids in improving the quality of wheat products. Additionally, we gained a deeper understanding of the change in the internal structure of dough sheets during the boiling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. S. Liu, Y. Jiang, B. Xu, S. Jiang, Food Chem. 404 (Pt A). 134359 (2023). https://doi.org/10.1016/j.foodchem.2022.134359

  2. T. Liu, M. Niu, G.G. Hou, Food Chem. 305, 125500 (2020). https://doi.org/10.1016/j.foodchem.2019.125500

    Article  CAS  PubMed  Google Scholar 

  3. E. Aydin, D. Gocmen, Food Sci. Biotechnol. 20(2), 507–511 (2011). https://doi.org/10.1007/s10068-011-0070-1

    Article  Google Scholar 

  4. S. Zhang, X. Sun, X. Xu et al., J. Cereal Sci. 108, 103584 (2022). https://doi.org/10.1016/j.jcs.2022.103584

    Article  CAS  Google Scholar 

  5. S. Kraithong, A. Theppawong, S. Lee, R. Huang, Food Hydrocoll. 142, 108821 (2023). https://doi.org/10.1016/j.foodhyd.2023.108821

    Article  CAS  Google Scholar 

  6. E. Zannini, D.M. Waters, E.K. Arendt, Eur. Food Res. Technol. 238(5), 763–771 (2014). https://doi.org/10.1007/s00217-014-2161-8

    Article  CAS  Google Scholar 

  7. H.-L. Tan, T.-C. Tan, A.M. Easa, Int. J. Food Sci. Tech. 53(7), 1603–1610 (2018). https://doi.org/10.1111/ijfs.13742

    Article  CAS  Google Scholar 

  8. H.-L. Tan, T.-C. Tan, A.M. Easa, Food Hydrocoll. 108, 105996 (2020). https://doi.org/10.1016/j.foodhyd.2020.105996

    Article  CAS  Google Scholar 

  9. M. Obadi, J. Zhang, B. Xu, Food Res. Int. 157, 111278 (2022). https://doi.org/10.1016/j.foodres.2022.111278

    Article  CAS  PubMed  Google Scholar 

  10. M. Chen, L. Wang, H. Qian et al., Food Chem. 283, 353–358 (2019). https://doi.org/10.1016/j.foodchem.2019.01.049

    Article  CAS  PubMed  Google Scholar 

  11. T.T. Zhao, X.N. Guo, K.X. Zhu, Food Chem. 384, 132481 (2022). https://doi.org/10.1016/j.foodchem.2022.132481

    Article  CAS  PubMed  Google Scholar 

  12. M. Zhang, M. Ma, T. Yang, M. Li, Q. Sun, Food Hydrocoll. 123 (2022). https://doi.org/10.1016/j.foodhyd.2021.107114

  13. Z. Germishuys, M. Manley, Innov. Food Sci. Emerg. 73 (2021). https://doi.org/10.1016/j.ifset.2021.102766

  14. H. Fan, F. Fu, Y. Chen, M. Liu, Z. Ai, K. Bian, J. Cereal Sci. 93, 102936 (2020). https://doi.org/10.1016/j.jcs.2020.102936

    Article  CAS  Google Scholar 

  15. N. Wang, G.G. Hou, A. Dubat, LWT-Food Sci. Technol. 82, 147–153 (2017). https://doi.org/10.1016/j.lwt.2017.04.025

    Article  CAS  Google Scholar 

  16. X. Sun, Z. Bu, B. Qiao, P. Drawbridge, Y. Fang, Food Chem. 410, 135447 (2023). https://doi.org/10.1016/j.foodchem.2023.135447

    Article  CAS  PubMed  Google Scholar 

  17. X. Sun, F. Pei, Y. Fang, Food Chem. 370, 130976 (2022). https://doi.org/10.1016/j.foodchem.2021.130976

    Article  CAS  PubMed  Google Scholar 

  18. R. Huang, K. Huang, X. Guan, J. Zhang, P. Zhang, J. Cereal Sci. 108 (2022). https://doi.org/10.1016/j.jcs.2022.103542

  19. M. Zhang, M. Ma, R. Jia, T. Yang, Q. Sun, M. Li, Food Chem. 386, 132853 (2022). https://doi.org/10.1016/j.foodchem.2022.132853

    Article  CAS  PubMed  Google Scholar 

  20. M. Mastromatteo, M. Guida, A. Danza et al., Food Res. Int. 51(2), 458–466 (2013). https://doi.org/10.1016/j.foodres.2013.01.004

    Article  CAS  Google Scholar 

  21. S. Singh, N. Singh, Food Hydrocoll. 33(2), 342–348 (2013). https://doi.org/10.1016/j.foodhyd.2013.04.007

    Article  CAS  Google Scholar 

  22. M. Kundu, B.S. Khatkar, N. Gulia, Food Chem. 226, 95–101 (2017). https://doi.org/10.1016/j.foodchem.2016.12.046

    Article  CAS  PubMed  Google Scholar 

  23. D. Keita, G. Léger, N. Bordenave, Food Res. Int. 147, 110478 (2021). https://doi.org/10.1016/j.foodres.2021.110478

    Article  CAS  PubMed  Google Scholar 

  24. M.J. Correa, C. Ferrero, Starch - Stärke. 67(3–4), 338–347 (2015). https://doi.org/10.1002/star.201400116

    Article  CAS  Google Scholar 

  25. J. Li, Y. Zhu, M.P. Yadav, J. Li, Food Chem. 271, 165–173 (2019). https://doi.org/10.1016/j.foodchem.2018.07.192

    Article  CAS  PubMed  Google Scholar 

  26. M. Chaisawang, M. Suphantharika, Food Hydrocoll. 20(5), 641–649 (2006). https://doi.org/10.1016/j.foodhyd.2005.06.003

    Article  CAS  Google Scholar 

  27. N. Ni, Z. Wang, F. He et al., Process. Biochem. 49(4), 631–636 (2014). https://doi.org/10.1016/j.procbio.2014.01.017

    Article  CAS  Google Scholar 

  28. Y.-Y. Feng, T.-H. Mu, M. Zhang, M.-M. Ma, Int. J. Biol. Macromol. 148, 1–10 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.225

    Article  CAS  PubMed  Google Scholar 

  29. J. Sun, M. Chen, X. Hou et al., Food Chem. 358, 129895 (2021). https://doi.org/10.1016/j.foodchem.2021.129895

    Article  CAS  PubMed  Google Scholar 

  30. G.K. Sandhu, S. Simsek, F.A. Manthey, Int. J. Food Sci. Tech. 50(8), 1922–1932 (2015). https://doi.org/10.1111/ijfs.12813

    Article  CAS  Google Scholar 

  31. A.G. Yovchev, A.K. Stone, P. Hucl, M.G. Scanlon, M.T. Nickerson, Cereal Chem. 94(3), 513–518 (2017). https://doi.org/10.1094/CCHEM-09-16-0240-R

    Article  CAS  Google Scholar 

  32. X. Sun, F. Koksel, M.T. Nickerson, M.G. Scanlon, Food Hydrocoll. 98, 105129 (2020). https://doi.org/10.1016/j.foodhyd.2019.05.030

    Article  CAS  Google Scholar 

  33. B.-K. Baik, M.-R. Lee, Cereal Chem. 80(3), 304–309 (2003). https://doi.org/10.1094/cchem.2003.80.3.304

    Article  CAS  Google Scholar 

  34. C. Biliaderis, T. Maurice, J. Vose, J. Food Sci. 45(6), 1669–1674 (1980). https://doi.org/10.1111/j.1365-2621.1980.tb07586.x

    Article  Google Scholar 

  35. T. Ukai, Y. Matsumura, R. Urade, J. Agr, Food Chem. 56(3), 1122–1130 (2008). https://doi.org/10.1021/jf0725676

    Article  CAS  Google Scholar 

  36. C.M. Rosell, J.A. Rojas, C. Benedito de, Barber, Food Hydrocoll. 15(1), 75–81 (2001). https://doi.org/10.1016/S0268-005X(00)00054-0

    Article  CAS  Google Scholar 

  37. M.J. Correa, E. Ferrer, M.C. Añón, C. Ferrero, Food Hydrocoll. 35, 91–99 (2014). https://doi.org/10.1016/j.foodhyd.2013.04.020

  38. M. Azeem, T.H. Mu, M. zhang, LWT. 142, 110970 (2021). https://doi.org/10.1016/j.lwt.2021.110970

    Article  CAS  Google Scholar 

  39. Z.-B. Cao, C. Yu, Z. Yang, J.-J. Xing, X.-N. Guo, K.-X. Zhu, Food Hydrocoll. 119, 106842 (2021). https://doi.org/10.1016/j.foodhyd.2021.106842

    Article  CAS  Google Scholar 

  40. X. Gao, T. Liu, M. Ding et al., Food Chem. 240, 626–633 (2018). https://doi.org/10.1016/j.foodchem.2017.07.165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2022YFD2100202, 2022YFD2100204), the National Natural Science Foundation of China (32272418), the General Project of Natural Science Research in Universities of Jiangsu Province (21KJB550004), Jiangsu Province Key Research and Development Program (Modern Agriculture) Project (BE2021370), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Kaidong Wei: Conceptualization, Data curation, Formal analysis, Writing – original draft. Xuan Hu: Formal analysis, Writing – original draft. Xin Zheng: Formal analysis. Guanglei Li: Conceptualization, Formal analysis, Writing – review & editing, Supervision. Peng Li: Formal analysis. Jian Yuan: Formal analysis, Supervision. Changrui Xing: Conceptualization, Formal analysis, Writing – review & editing, Supervision. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Guanglei Li or Changrui Xing.

Ethics declarations

Conflict of Interest

All the authors declare that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Hu, X., Zheng, X. et al. Effects of Phosphate Salts and Hydrocolloids on Rheological, Microstructural, and Cooking Properties of Dough Sheets During Boiling Process. Food Biophysics (2024). https://doi.org/10.1007/s11483-024-09842-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11483-024-09842-w

Keywords

Navigation