Skip to main content

Advertisement

Log in

Construction of immune-related gene pairs signature to predict the overall survival of multiple myeloma patients based on whole bone marrow gene expression profiling

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a plasma cell dyscrasia that is characterized by the uncontrolled proliferation of malignant PCs in the bone marrow. Due to immunotherapy, attention has returned to the immune system in MM, and it appears necessary to identify biomarkers in this area. In this study, we created a prognostic model for MM using immune-related gene pairs (IRGPs), with the advantage that it is not affected by technical bias. After retrieving microarray data of MM patients, bioinformatics analyses like COX regression and least absolute shrinkage and selection operator (LASSO) were used to construct the signature. Then its prognostic value is assessed via time-dependent receiver operating characteristic (ROC) and the Kaplan–Meier (KM) analysis. We also used XCELL to examine the status of immune cell infiltration among MM patients. 6-IRGP signatures were developed and proved to predict MM prognosis with a P-value of 0.001 in the KM analysis. Moreover, the risk score was significantly associated with clinicopathological characteristics and was an independent prognostic factor. Of note, the combination of age and β2-microglobulin with risk score could improve the accuracy of determining patients’ prognosis with the values of the area under the curve (AUC) of 0.73 in 5 years ROC curves. Our model was also associated with the distribution of immune cells. This novel signature, either alone or in combination with age and β2-microglobulin, showed a good prognostic predictive value and might be used to guide the management of MM patients in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary file. Further inquiries can be directed to the corresponding author.

References

  • Ajona D et al (2018) Blockade of the complement C5a/C5aR1 axis impairs lung cancer bone metastasis by CXCL16-mediated effects. Am J Respir Crit Care Med 197(9):1164–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):1–14

    Article  Google Scholar 

  • Bhattacharya S et al (2014) ImmPort: disseminating data to the public for the future of immunology. Immunol Res 58(2):234–239

    Article  CAS  PubMed  Google Scholar 

  • Black H, Glavey S (2021) Gene expression profiling as a prognostic tool in multiple myeloma. Cancer Drug Resistance 4(4):1008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botta C et al (2016) A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival. Blood Cancer J 6(12):e511–e511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burks J et al (2019) ISG15 pathway knockdown reverses pancreatic cancer cell transformation and decreases murine pancreatic tumor growth via downregulation of PDL-1 expression. Cancer Immunol Immunother 68:2029–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JD et al (2001) Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGFβ is reversed by IL-15. J Immunol 167(1):553–561

    Article  CAS  PubMed  Google Scholar 

  • Chen R-H et al (2020) Tumor cell-secreted ISG15 promotes tumor cell migration and immune suppression by inducing the macrophage M2-like phenotype. Front Immunol 11:594775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou C-L et al (2021) CTSE overexpression is an adverse prognostic factor for survival among rectal cancer patients receiving CCRT. Life 11(7):646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Magalhães RJP et al (2013) Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry. Haematologica 98(1):79

    Article  Google Scholar 

  • Ding P et al (2020) C5aR1 is a master regulator in colorectal tumorigenesis via immune modulation. Theranostics 10(19):8619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelik L, Flavell RA (2002) Transforming growth factor-β in T-cell biology. Nat Rev Immunol 2(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Gros A et al (2014) PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Investig 124(5):2246–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros A et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hipp S et al (2017) A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia 31(8):1743–1751

    Article  CAS  PubMed  Google Scholar 

  • Jing W et al (2017) Adoptive cell therapy using PD-1+ myeloma-reactive T cells eliminates established myeloma in mice. J Immunother Cancer 5(1):1–11

    Article  Google Scholar 

  • Kang YJ et al (2013) Identification of human leucocyte antigen (HLA)-A* 0201-restricted cytotoxic T lymphocyte epitopes derived from HLA-DO β as a novel target for multiple myeloma. Br J Haematol 163(3):343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H-S et al (2011) Functional roles of Src and Fgr in ovarian carcinomafunctional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 17(7):1713–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kline M et al (2005) Identification of genes associated with increased bone marrow angiogenesis in multiple myeloma. Blood 106(11):5109

    Article  Google Scholar 

  • Kuiper R et al (2012) A gene expression signature for high-risk multiple myeloma. Leukemia 26(11):2406–2413

    Article  CAS  PubMed  Google Scholar 

  • Kumar SK et al (2017) Multiple myeloma. Nat Rev Dis Primers. https://doi.org/10.1038/nrdp.2017.46

    Article  PubMed  Google Scholar 

  • Lawal B et al (2021) Pan-cancer analysis of immune complement signature C3/C5/C3AR1/C5AR1 in association with tumor immune evasion and therapy resistance. Cancers 13(16):4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F et al (2016) The increased excretion of urinary orosomucoid 1 as a useful biomarker for bladder cancer. Am J Cancer Res 6(2):331–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2020) Clinical significance of PI3 and HLA-DOB as potential prognostic predicators for ovarian cancer. Transl Cancer Res 9(2):466–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorent M, Giral M, Foucher Y (2014) A solution for evaluating the accuracy of a marker to predict disease-related mortality. Stat Med. 33(14):2379–2389

    Article  PubMed  Google Scholar 

  • Maecker B et al (2003) Viral antigen-specific CD8+ T-cell responses are impaired in multiple myeloma. Br J Haematol 121(6):842–848

    Article  PubMed  Google Scholar 

  • Mamoor S (2020) The death receptor Fas (CD95) is differentially expressed in brain metastases in breast cancer. https://doi.org/10.31219/osf.io/mtafu

  • Mamoor S (2021) CD3d is differentially expressed in the lymph nodes of patients with metastatic breast cancer. https://doi.org/10.31219/osf.io/5qf8d

  • Meijuan C, Meng X, Fang L, Qian W (2023) Synaptotagmin-like protein 1 is a potential diagnostic and prognostic biomarker in endometrial cancer based on bioinformatics and experiments. J Ovarian Res. 16(1):16. https://doi.org/10.1186/s13048-023-01097-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser-Katz T et al (2021) Game of bones: how myeloma manipulates its microenvironment. Front Oncol 10:625199

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Smyth MJ, Martinet L (2020) Cancer immunoediting and immune dysregulation in multiple myeloma. Blood 136(24):2731–2740

    Article  CAS  PubMed  Google Scholar 

  • Neumeister P et al (2022) Targeting the microenvironment for treating multiple myeloma. Int J Mol Sci 23(14):7627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlyn C, Davies FE (2019) Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood 133(7):660–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontious C et al (2019) Cathepsin E expression and activity: role in the detection and treatment of pancreatic cancer. Pancreatology 19(7):951–956

    Article  CAS  PubMed  Google Scholar 

  • Qiong L, Yin J (2021) Orosomucoid 1 promotes epirubicin resistance in breast cancer by upregulating the expression of matrix metalloproteinases 2 and 9. Bioengineered 12(1):8822–8832

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu X et al (2015) ISG15 as a novel prognostic biomarker for hepatitis B virus-related hepatocellular carcinoma. Int J Clin Exp Med 8(10):17140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raje N et al (2019) Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med 380(18):1726–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseweir AK et al (2019) Src family kinases, HCK and FGR, associate with local inflammation and tumour progression in colorectal cancer. Cell Signal 56:15–22

    Article  CAS  PubMed  Google Scholar 

  • Rossi M et al (2013) Immunologic microenvironment and personalized treatment in multiple myeloma. Expert Opin Biol Ther 13(sup1):S83–S93

    Article  CAS  PubMed  Google Scholar 

  • Sainz B et al (2014) ISG15 is a critical microenvironmental factor for pancreatic cancer stem CellsISG15 and pancreatic cancer. Can Res 74(24):7309–7320

    Article  CAS  Google Scholar 

  • Soliman AM, Das S, Teoh SL (2021) Next-generation biomarkers in multiple myeloma: understanding the molecular basis for potential use in diagnosis and prognosis. Int J Mol Sci 22(14):7470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamydas M et al (2022) Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol 15(1):1–17

    Article  Google Scholar 

  • Tao J et al (2015) Prognostic value of ISG15 mRNA level in drinkers with esophageal squamous cell cancers. Int J Clin Exp Pathol 8(9):10975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usmani SZ et al (2019) Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. Lancet Haematol 6(9):e448–e458

    Article  PubMed  Google Scholar 

  • van de Donk NW et al (2016) Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood 127(6):681–695

    Article  PubMed  Google Scholar 

  • Wallington-Beddoe CT, Mynott RL (2021) Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol 14(1):1–15

    Article  Google Scholar 

  • Went M et al (2019) Transcriptome-wide association study of multiple myeloma identifies candidate susceptibility genes. Hum Genomics 13(1):1–8

    Article  CAS  Google Scholar 

  • Wild PJ et al (2005) Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clin Cancer Res 11(12):4415–4429

    Article  CAS  PubMed  Google Scholar 

  • Wu G et al (2022) Bioinformatics analysis of the clinical significance of HLA class II in breast cancer. Medicine (baltimore) 101(40):e31071

    Article  CAS  PubMed  Google Scholar 

  • Xiong J et al (2021) C3a and C5a facilitates the metastasis of myeloma cells by activating Nrf2. Cancer Gene Ther 28(3):265–278

    Article  CAS  PubMed  Google Scholar 

  • Xu D et al (2022) C5aR1 promotes the progression of colorectal cancer by EMT and activating Wnt/β-catenin pathway. Clin Transl Oncol. 25(2):440–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2020) CD3D is associated with immune checkpoints and predicts favorable clinical outcome in colon cancer. Immunotherapy 12(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama T et al (2016) MEIS1-mediated transactivation of synaptotagmin-like 1 promotes CXCL12/CXCR4 signaling and leukemogenesis. J Clin Investig 126(5):1664–1678

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan L et al (2022) Cd3d is an independent prognostic factor and correlates with immune infiltration in gastric cancer. Front Oncol. https://doi.org/10.3389/fonc.2022.913670

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yu C (2020) Prognostic characterization of OAS1/OAS2/OAS3/OASL in breast cancer. BMC Cancer 20(1):1–12

    Google Scholar 

  • Zhang C et al (2021) Three immune-related prognostic mRNAs as therapeutic targets for pancreatic cancer. Front Med 8:649326

    Article  Google Scholar 

  • Zhu Z et al (2021) Comprehensive analysis reveals a prognostic and therapeutic biomarker CD3D in the breast carcinoma microenvironment. Biosci Rep 41(1):BSR20202898. https://doi.org/10.1042/BSR20202898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Atieh Pourbagheri-Sigaroodi (Shahid Beheshti University of Medical Sciences, Tehran, Iran) for providing Fig. 9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Bashash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Xia Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 110 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari-Raddani, F., Davoodi-Moghaddam, Z. & Bashash, D. Construction of immune-related gene pairs signature to predict the overall survival of multiple myeloma patients based on whole bone marrow gene expression profiling. Mol Genet Genomics 299, 47 (2024). https://doi.org/10.1007/s00438-024-02140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00438-024-02140-7

Keywords

Navigation