Skip to main content
Log in

TRIM28 Fosters Microglia Ferroptosis via Autophagy Modulation to Enhance Neuropathic Pain and Neuroinflammation

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study explores the molecular underpinnings of neuropathic pain (NPP) and neuroinflammation, focusing on the role of TRIM28 in the regulation of autophagy and microglia ferroptosis. Leveraging transcriptomic data associated with NPP, we identified TRIM28 as a critical regulator of ferroptosis. Through comprehensive analysis, including Gene Ontology enrichment and protein-protein interaction network assessments, we unveiled GSK3B as a downstream target of TRIM28. Experimental validation confirmed the capacity of TRIM28 to suppress GSK3B expression and attenuate autophagic processes in microglia. We probed the consequences of autophagy and ferroptosis on microglia physiology, iron homeostasis, oxidative stress, and the release of proinflammatory cytokines. In a murine model, we validated the pivotal role of TRIM28 in NPP and neuroinflammation. Our analysis identified 20 ferroptosis regulatory factors associated with NPP, with TRIM28 emerging as a central orchestrator. Experimental evidence affirmed that TRIM28 governs microglial iron homeostasis and cell fate by downregulating GSK3B expression and modulating autophagy. Notably, autophagy was found to influence oxidative stress and proinflammatory cytokine release through the iron metabolism pathway, ultimately fueling neuroinflammation. In vivo experiments provided conclusive evidence of TRIM28-mediated pathways contributing to heightened pain sensitivity in neuroinflammatory states. The effect of TRIM28 on autophagy and microglia ferroptosis drives NPP and neuroinflammation. These findings offer promising avenues for identifying novel therapeutic targets to manage NPP and neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Fitzcharles MA, Cohen SP, Clauw DJ, Littlejohn G, Usui C, Häuser W (2021) Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet (London England) 397(10289):2098–2110. https://doi.org/10.1016/S0140-6736(21)00392-5

    Article  PubMed  Google Scholar 

  2. Harmer B, Lee S, Duong TVH, Saadabadi A (2023) Suicidal ideation. StatPearls. StatPearls Publishing

  3. Moloney NA, Lenoir D (2023) Assessment of neuropathic pain following cancer treatment. Anatomical record (Hoboken, N.J.: 2007), 10.1002/ar.25161. Advance online publication. https://doi.org/10.1002/ar.25161

  4. Voute M, Morel V, Pickering G (2021) Topical Lidocaine for Chronic Pain Treatment. Drug Des Devel Ther 15:4091–4103. https://doi.org/10.2147/DDDT.S328228

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gurba KN, Chaudhry R, Haroutounian S (2022) Central Neuropathic Pain syndromes: current and emerging pharmacological strategies. CNS Drugs 36(5):483–516. https://doi.org/10.1007/s40263-022-00914-4

    Article  CAS  PubMed  Google Scholar 

  6. Berger AA, Keefe J, Winnick A, Gilbert E, Eskander JP, Yazdi C, Kaye AD, Viswanath O, Urits I (2020) Cannabis and cannabidiol (CBD) for the treatment of fibromyalgia. Best practice & research. Clin Anaesthesiol 34(3):617–631. https://doi.org/10.1016/j.bpa.2020.08.010

    Article  Google Scholar 

  7. Jiang X, Yuan Y, Ma Y, Zhong M, Du C, Boey J, Armstrong DG, Deng W, Duan X (2021) Pain Management in people with diabetes-related chronic limb-threatening ischemia. J Diabetes Res 2021:6699292. https://doi.org/10.1155/2021/6699292

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee JK, Hsieh IC, Su CH, Huang HL, Lei MH, Chiu KM, Huang CL, Chen CC, Hsu PC, Hsu CH, Huang CY, Lee CH, Chang WC, Lee HF, Liu JC, Yeh HI (2023) Referral, diagnosis, and Pharmacological Management of Peripheral Artery Disease: perspectives from Taiwan. Acta Cardiol Sinica 39(1):97–108. https://doi.org/10.6515/ACS.202301_39(1).20220815A

    Article  Google Scholar 

  9. Russo MA, Baron R, Dickenson AH, Kern KU, Santarelli DM (2023) Ambroxol for neuropathic pain: hiding in plain sight? Pain 164(1):3–13. https://doi.org/10.1097/j.pain.0000000000002693

    Article  PubMed  Google Scholar 

  10. Jorfi M, Maaser-Hecker A, Tanzi RE (2023) The neuroimmune axis of Alzheimer’s disease. Genome Med 15(1):6. https://doi.org/10.1186/s13073-023-01155-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mert T (2023) Pulsed magnetic Field treatment for calming Neuroinflammation in Pain conditions. Altern Ther Health Med 29(6):62–67

    PubMed  Google Scholar 

  12. Au NPB, Ma CHE (2022) Neuroinflammation, Microglia and implications for Retinal Ganglion Cell Survival and Axon Regeneration in Traumatic Optic Neuropathy. Front Immunol 13:860070. https://doi.org/10.3389/fimmu.2022.860070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. El-Aarag SA, Mahmoud A, Hashem MH, Elkader A, Hemeida H, A. E., ElHefnawi M (2017) In silico identification of potential key regulatory factors in smoking-induced lung cancer. BMC Med Genom 10(1):40. https://doi.org/10.1186/s12920-017-0284-z

    Article  CAS  Google Scholar 

  14. Qin Y, Li Q, Liang W, Yan R, Tong L, Jia M, Zhao C, Zhao W (2021) TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation. Nat Commun 12(1):4794. https://doi.org/10.1038/s41467-021-25033-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noori T, Dehpour AR, Sureda A, Fakhri S, Sobarzo-Sanchez E, Farzaei MH, Küpeli Akkol E, Khodarahmi Z, Hosseini SZ, Alavi SD, Shirooie S (2020) The role of glycogen synthase kinase 3 beta in multiple sclerosis. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie 132:110874. https://doi.org/10.1016/j.biopha.2020.110874

    Article  CAS  PubMed  Google Scholar 

  16. Kim J, Shin JY, Choi YH, Lee SY, Jin MH, Kim CD, Kang NG, Lee S (2021) Adenosine and Cordycepin Accelerate Tissue Remodeling Process through Adenosine receptor mediated Wnt/β-Catenin pathway stimulation by regulating GSK3b activity. Int J Mol Sci 22(11):5571. https://doi.org/10.3390/ijms22115571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic Pain: from mechanisms to treatment. Physiol Rev 101(1):259–301. https://doi.org/10.1152/physrev.00045.2019

    Article  CAS  PubMed  Google Scholar 

  18. Xiao Y, Yu D (2021) Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 221:107753. https://doi.org/10.1016/j.pharmthera.2020.107753

    Article  CAS  PubMed  Google Scholar 

  19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan L, Xu Q, Wang Q, Shi R, Zhang G (2020) Identification of key genes and pathways affected in epicardial adipose tissue from patients with coronary artery disease by integrated bioinformatics analysis. PeerJ 8:e8763. https://doi.org/10.7717/peerj.8763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo H, Ma C (2020) Identification of prognostic genes in uveal melanoma microenvironment. PLoS ONE 15(11):e0242263. https://doi.org/10.1371/journal.pone.0242263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai F, Wu J, Deng Z, Li H, Tan W, Yuan M, Yang D, Liu S, Zheng Y, Hu M, Yuan C, Cheng Y (2022) Integrated Bioinformatic analysis of DNA methylation and Immune Infiltration in Endometrial Cancer. Biomed Res Int 2022(5119411). https://doi.org/10.1155/2022/5119411

  23. Shi T, Gao G (2022) Identify potential prognostic indicators and tumor-infiltrating immune cells in pancreatic adenocarcinoma. Biosci Rep 42(2):BSR20212523. https://doi.org/10.1042/BSR20212523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yi XP, Han T, Li YX, Long XY, Li WZ (2015) Simultaneous silencing of XIAP and survivin causes partial mesenchymal-epithelial transition of human pancreatic cancer cells via the PTEN/PI3K/Akt pathway. Mol Med Rep 12(1):601–608. https://doi.org/10.3892/mmr.2015.3380

    Article  CAS  PubMed  Google Scholar 

  25. Jiang C, Tan T, Yi XP, Shen H, Li YX (2011) Lentivirus-mediated shRNA targeting XIAP and survivin inhibit SW1990 pancreatic cancer cell proliferation in vitro and in vivo. Mol Med Rep 4(4):667–674. https://doi.org/10.3892/mmr.2011.472

    Article  CAS  PubMed  Google Scholar 

  26. Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P, Buch S (2023) HIV-1 Tat-mediated microglial ferroptosis involves the mir-204-ACSL4 signaling axis. Redox Biol 62:102689. https://doi.org/10.1016/j.redox.2023.102689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin JQ, Tian H, Zhao XG, Lin S, Li DY, Liu YY, Xu C, Mei XF (2021) Zinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination in a spinal contusion injury model. CNS Neurosci Ther 27(4):413–425. https://doi.org/10.1111/cns.13460

    Article  CAS  PubMed  Google Scholar 

  28. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, Zhou K, Liu X, Ren X, Wang F, Hu J, Zhu X, Yang W, Liao W, Li G, Ding Y, Liang L (2018) Cancer-derived exosomal mir-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 9(1):5395. https://doi.org/10.1038/s41467-018-07810-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma, X. H., Piao, S. F., Dey, S., McAfee, Q., Karakousis, G., Villanueva, J., Hart, L. S., Levi, S., Hu, J., Zhang, G., Lazova, R., Klump, V., Pawelek, J. M., Xu, X., Xu, W., Schuchter, L. M., Davies, M. A., Herlyn, M., Winkler, J., Koumenis, C., … Amaravadi, R. K. (2014). Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. The Journal of clinical investigation, 124(3):1406–1417. https://doi.org/10.1172/JCI70454

  30. Liao S, Wu J, Liu R, Wang S, Luo J, Yang Y, Qin Y, Li T, Zheng X, Song J, Zhao X, Xiao C, Zhang Y, Bian L, Jia P, Bai Y, Zheng X (2020) A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol 36:101644. https://doi.org/10.1016/j.redox.2020.101644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park E, Chung SW (2019) ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 10(11):822. https://doi.org/10.1038/s41419-019-2064-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu K, Zhu X, Sun S, Yang W, Liu S, Tang Z, Zhang R, Li J, Shen T, Hei M (2021) Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats. Exp Neurol 345:113828. https://doi.org/10.1016/j.expneurol.2021.113828

    Article  CAS  PubMed  Google Scholar 

  33. Lu Y, Zhang J, Zeng F, Wang P, Guo X, Wang H, Qin Z, Tao T (2022) Human PMSCs-derived small extracellular vesicles alleviate neuropathic pain through miR-26a-5p/Wnt5a in SNI mice model. J Neuroinflamm 19(1):221. https://doi.org/10.1186/s12974-022-02578-9

    Article  CAS  Google Scholar 

  34. Zeng H, Liu N, Yang YY, Xing HY, Liu XX, Li F, La GY, Huang MJ, Zhou MW (2019) Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J Neuroinflamm 16(1):283. https://doi.org/10.1186/s12974-019-1658-2

    Article  CAS  Google Scholar 

  35. Li YJ, Chen X, Kwan TK, Loh YW, Singer J, Liu Y, Ma J, Tan J, Macia L, Mackay CR, Chadban SJ, Wu H (2020) Dietary Fiber protects against Diabetic Nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A. J Am Soc Nephrology: JASN 31(6):1267–1281. https://doi.org/10.1681/ASN.2019101029

    Article  CAS  PubMed Central  Google Scholar 

  36. Wu C, Pan Y, Wang L, Liu M, Wu M, Wang J, Yang G, Guo Y, Ma Y (2022) A new method for primary culture of microglia in rats with spinal cord injury. Biochem Biophys Res Commun 599:63–68. https://doi.org/10.1016/j.bbrc.2022.02.027

    Article  CAS  PubMed  Google Scholar 

  37. Deng YF, Xiang P, Du JY, Liang JF, Li X (2023) Intrathecal liproxstatin-1 delivery inhibits ferroptosis and attenuates mechanical and thermal hypersensitivities in rats with complete Freund’s adjuvant-induced inflammatory pain. Neural Regeneration Res 18(2):456–462. https://doi.org/10.4103/1673-5374.346547

    Article  CAS  Google Scholar 

  38. Qian ZY, Kong RY, Zhang S, Wang BY, Chang J, Cao J, Wu CQ, Huang ZY, Duan A, Li HJ, Yang L, Cao XJ (2022) Ruxolitinib attenuates secondary injury after traumatic spinal cord injury. Neural Regeneration Res 17(9):2029–2035. https://doi.org/10.4103/1673-5374.335165

    Article  CAS  Google Scholar 

  39. Hosseini M, Yousefifard M, Aziznejad H, Nasirinezhad F, Transplantation (2015) 21(9), 1537–1544. https://doi.org/10.1016/j.bbmt.2015.05.008

  40. Gao X, Gao LF, Kong XQ, Zhang YN, Jia S, Meng CY (2023) Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy. Int Immunopharmacol 115:109695. https://doi.org/10.1016/j.intimp.2023.109695

    Article  CAS  PubMed  Google Scholar 

  41. Czerwińska P, Mazurek S, Wiznerowicz M (2017) The complexity of TRIM28 contribution to cancer. J Biomed Sci 24(1):63. https://doi.org/10.1186/s12929-017-0374-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng Y, Zhang M, Jiang Z, Jiang Y (2019) TRIM28 activates autophagy and promotes cell proliferation in glioblastoma. OncoTargets Therapy 12:397–404. https://doi.org/10.2147/OTT.S188101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song T, Lv S, Ma X, Zhao X, Fan L, Zou Q, Li N, Yan Y, Zhang W, Sun L (2023) TRIM28 represses renal cell carcinoma cell proliferation by inhibiting TFE3/KDM6A-regulated autophagy. J Biol Chem 299(5):104621. https://doi.org/10.1016/j.jbc.2023.104621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pineda CT, Potts PR (2015) Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer. Autophagy 11(5):844–846. https://doi.org/10.1080/15548627.2015.1034420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Sem Cancer Biol 66:89–100. https://doi.org/10.1016/j.semcancer.2019.03.002

    Article  CAS  Google Scholar 

  46. Ryu HY, Kim LE, Jeong H, Yeo BK, Lee JW, Nam H, Ha S, An HK, Park H, Jung S, Chung KM, Kim J, Lee BH, Cheong H, Kim EK, Yu SW (2021) GSK3B induces autophagy by phosphorylating ULK1. Exp Mol Med 53(3):369–383. https://doi.org/10.1038/s12276-021-00570-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen J, Qin C, Zhou Y, Chen Y, Mao M, Yang J (2022) Metformin may induce ferroptosis by inhibiting autophagy via lncRNA H19 in breast cancer. FEBS open bio 12(1):146–153. https://doi.org/10.1002/2211-5463.13314

    Article  CAS  PubMed  Google Scholar 

  48. Sung HK, Murugathasan M, Abdul-Sater AA, Sweeney G (2023) Autophagy deficiency exacerbates iron overload induced reactive oxygen species production and apoptotic cell death in skeletal muscle cells. Cell Death Dis 14(4):252. https://doi.org/10.1038/s41419-022-05484-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11(8):1437–1438. https://doi.org/10.1080/15548627.2015.1066957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Theil EC (2004) Iron, ferritin, and nutrition. Annu Rev Nutr 24:327–343. https://doi.org/10.1146/annurev.nutr.24.012003.132212

    Article  CAS  PubMed  Google Scholar 

  52. Liu S, Gao X, Zhou S (2022) New Target for Prevention and Treatment of Neuroinflammation: Microglia Iron Accumulation and Ferroptosis. ASN neuro, 14, 17590914221133236. https://doi.org/10.1177/17590914221133236

  53. Liang D, Minikes AM, Jiang X (2022) Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 82(12):2215–2227. https://doi.org/10.1016/j.molcel.2022.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klionsky, D. J., Petroni, G., Amaravadi, R. K., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cadwell, K., Cecconi, F., Choi, A. M. K., Choi, M. E., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Deretic, V., Dikic, I., Elazar, Z., Eskelinen, E. L., Fimia, G. M., … Pietrocola, F. (2021). Autophagy in major human diseases. The EMBO journal, 40(19):e108863. https://doi.org/10.15252/embj.2021108863

  55. Li J, Tian M, Hua T, Wang H, Yang M, Li W, Zhang X, Yuan H (2021) Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy 17(12):4062–4082. https://doi.org/10.1080/15548627.2021.1900498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bolisetty S, Zarjou A, Agarwal A (2017) Heme Oxygenase 1 as a therapeutic target in Acute kidney Injury. Am J Kidney Diseases: Official J Natl Kidney Foundation 69(4):531–545. https://doi.org/10.1053/j.ajkd.2016.10.037

    Article  CAS  Google Scholar 

  57. Wang C, Zhang R, Wei X, Lv M, Jiang Z (2020) Metalloimmunology: the metal ion-controlled immunity. Adv Immunol 145:187–241. https://doi.org/10.1016/bs.ai.2019.11.007

    Article  CAS  PubMed  Google Scholar 

  58. Cui X, Chen F, Zhao J, Li D, Hu M, Chen X, Zhang Y, Han L (2023) Involvement of JNK signaling in Aspergillus fumigatus-induced inflammatory factors release in bronchial epithelial cells. Sci Rep 13(1):1293. https://doi.org/10.1038/s41598-023-28567-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang K, Li Z, Li Y, Liu X, Sun Y, Hong J, Ding Y, Zheng W, Qian L, Xu D (2022) Cardioprotection of Klotho against myocardial infarction-induced heart failure through inducing autophagy. Mech Ageing Dev 207:111714. https://doi.org/10.1016/j.mad.2022.111714

    Article  CAS  PubMed  Google Scholar 

  60. Xiao X, Liu D, Chen S, Li X, Ge M, Huang W (2021) Sevoflurane preconditioning activates HGF/Met-mediated autophagy to attenuate hepatic ischemia-reperfusion injury in mice. Cell Signal 82:109966. https://doi.org/10.1016/j.cellsig.2021.109966

    Article  CAS  PubMed  Google Scholar 

  61. Liang, J., Wang, L., Wang, C., Shen, J., Su, B., Marisetty, A. L., Fang, D., Kassab, C., Jeong, K. J., Zhao, W., Lu, Y., Jain, A. K., Zhou, Z., Liang, H., Sun, S. C., Lu, C., Xu, Z. X., Yu, Q., Shao, S., Chen, X., … Heimberger, A. B. (2020). Verteporfin Inhibits PD-L1 through Autophagy and the STAT1-IRF1-TRIM28 Signaling Axis, Exerting Antitumor Efficacy. Cancer immunology research, 8(7):952–965. https://doi.org/10.1158/2326-6066.CIR-19-0159

  62. Xu W, Li J, He C, Wen J, Ma H, Rong B, Diao J, Wang L, Wang J, Wu F, Tan L, Shi YG, Shi Y, Shen H (2021) METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591(7849):317–321. https://doi.org/10.1038/s41586-021-03210-1

    Article  CAS  PubMed  Google Scholar 

  63. Tovo PA, Davico C, Marcotulli D, Vitiello B, Daprà V, Calvi C, Montanari P, Carpino A, Galliano I, Bergallo M (2022) Enhanced expression of human endogenous retroviruses, TRIM28 and SETDB1 in Autism Spectrum Disorder. Int J Mol Sci 23(11):5964. https://doi.org/10.3390/ijms23115964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen X, Zhao Y (2019) Genetic involvement in Dental Implant failure: Association with polymorphisms of genes modulating inflammatory responses and bone metabolism. J Oral Implantol 45(4):318–326. https://doi.org/10.1563/aaid-joi-D-18-00212

    Article  PubMed  Google Scholar 

  65. Goldstein N, McKnight AD, Carty JRE, Arnold M, Betley JN, Alhadeff AL (2021) Hypothalamic detection of macronutrients via multiple gut-brain pathways. Cell Metabol 33(3):676–687e5. https://doi.org/10.1016/j.cmet.2020.12.018

    Article  CAS  Google Scholar 

  66. Liu M, Luo G, Dong L, Mazhar M, Wang L, He W, Liu Y, Wu Q, Zhou H, Yang S (2022) Network Pharmacology and in Vitro Experimental Verification reveal the mechanism of the Hirudin in suppressing myocardial hypertrophy. Front Pharmacol 13:914518. https://doi.org/10.3389/fphar.2022.914518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Darbari DS, Sheehan VA, Ballas SK (2020) The vaso-occlusive pain crisis in sickle cell disease: definition, pathophysiology, and management. Eur J Haematol 105(3):237–246. https://doi.org/10.1111/ejh.13430

    Article  CAS  PubMed  Google Scholar 

  68. Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377–390. https://doi.org/10.1038/s41581-020-0278-5

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jiang Z, Guo N, Hong K (2020) A three-tiered integrative analysis of transcriptional data reveals the shared pathways related to heart failure from different aetiologies. J Cell Mol Med 24(16):9085–9096. https://doi.org/10.1111/jcmm.15544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li L, Li T, Qu X, Sun G, Fu Q, Han G (2023) Stress/cell death pathways, neuroinflammation, and neuropathic pain. Immunol Rev. https://doi.org/10.1111/imr.13275Advance online publication

    Article  PubMed  Google Scholar 

  71. Liao MF, Lu KT, Hsu JL, Lee CH, Cheng MY, Ro LS (2022) The role of Autophagy and apoptosis in Neuropathic Pain formation. Int J Mol Sci 23(5):2685. https://doi.org/10.3390/ijms23052685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li L, Guo L, Gao R, Yao M, Qu X, Sun G, Fu Q, Hu C, Han G (2023) Ferroptosis: a new regulatory mechanism in neuropathic pain. Front Aging Neurosci 15:1206851. https://doi.org/10.3389/fnagi.2023.1206851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D (2020) Autophagy-dependent ferroptosis: Machinery and Regulation. Cell Chem Biology 27(4):420–435. https://doi.org/10.1016/j.chembiol.2020.02.005

    Article  CAS  Google Scholar 

  74. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509(7498):105–109. https://doi.org/10.1038/nature13148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081. https://doi.org/10.1080/15548627.2020.1810918

    Article  CAS  PubMed  Google Scholar 

  76. Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L (2023) Sirtuins as potential targets for Neuroprotection: mechanisms of early brain Injury Induced by Subarachnoid Hemorrhage. Translational stroke research, https://doi.org/10.1007/s12975-023-01191-z. https://doi.org/10.1007/s12975-023-01191-z. Advance online publication

  77. Han J, Wang Y, Zhou H, Ai S, Wan D (2022) Integrated Bioinformatics and experimental analysis identified TRIM28 a potential prognostic biomarker and correlated with Immune infiltrates in Liver Hepatocellular Carcinoma. Comput Math Methods Med 2022(6267851). https://doi.org/10.1155/2022/6267851

  78. Wu L, Yu D, Liu P, Gao C, Wang Z (2023) Heuristic heterogeneous graph reasoning networks for Fact Verification. IEEE Trans Neural Networks Learn Syst PP. https://doi.org/10.1109/TNNLS.2023.3282380. https://doi.org/10.1109/TNNLS.2023.3282380 Advance online publication

Download references

Acknowledgements

None.

Funding

This study was supported by The Sichuan Science and Technology Program (2023YFS0254), Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University (230006-01SZ), Sichuan Science and Technology Program (2021YJ0181), and Southwest Medical University School Program (2023QN005).

Author information

Authors and Affiliations

Authors

Contributions

JT, QC and LX wrote the paper and conceived and designed the experiments; TT and YZ analyzed the data; CHO collected and provided the sample for this study. All authors have read and approved the final submitted manuscript.

Corresponding authors

Correspondence to Ying Zhang or Cehua Ou.

Ethics declarations

Ethics Approval

The Experimental Procedures and Animal Use Plans for this study were approved by the Animal Ethics Committee of the Affiliated Traditional Chinese Medicine Hospital (NO. 20220815- 004).

Consent to Participate

Not applicable.

Consent for publication

Consent for publication was obtained from the participants.

Competing interests

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Chen, Q., Xiang, L. et al. TRIM28 Fosters Microglia Ferroptosis via Autophagy Modulation to Enhance Neuropathic Pain and Neuroinflammation. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04133-4

Keywords

Navigation