Skip to main content
Log in

Purinergic Signalling Mediates Aberrant Excitability of Developing Neuronal Circuits in the Fmr1 Knockout Mouse Model

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuronal hyperexcitability within developing cortical circuits is a common characteristic of several heritable neurodevelopmental disorders, including Fragile X Syndrome (FXS), intellectual disability and autism spectrum disorders (ASD). While this aberrant circuitry is typically studied from a neuron-centric perspective, glial cells secrete soluble factors that regulate both neurite extension and synaptogenesis during development. The nucleotide-mediated purinergic signalling system is particularly instrumental in facilitating these effects. We recently reported that within a FXS animal model, the Fmr1 KO mouse, the purinergic signalling system is upregulated in cortical astrocytes leading to altered secretion of synaptogenic and plasticity-related proteins. In this study, we examined whether elevated astrocyte purinergic signalling also impacts neuronal morphology and connectivity of Fmr1 KO cortical neurons. Here, we found that conditioned media from primary Fmr1 KO astrocytes was sufficient to enhance neurite extension and complexity of both wildtype and Fmr1 KO neurons to a similar degree as UTP-mediated outgrowth. Significantly enhanced firing was also observed in Fmr1 KO neuron-astrocyte co-cultures grown on microelectrode arrays but was associated with large deficits in firing synchrony. The selective P2Y2 purinergic receptor antagonist AR-C 118925XX effectively normalized much of the aberrant Fmr1 KO activity, designating P2Y2 as a potential therapeutic target in FXS. These results not only demonstrate the importance of astrocyte soluble factors in the development of neural circuitry, but also show that P2Y purinergic receptors play a distinct role in pathological FXS neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No public datasets were generated or analysed during the current study.

References

  1. Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, Warren ST (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107(4):477–487. https://doi.org/10.1016/S0092-8674(01)00568-2

    Article  CAS  PubMed  Google Scholar 

  2. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Darnell RB (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261. https://doi.org/10.1016/j.cell.2011.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S et al (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67(6):1047–1058. https://doi.org/10.1016/0092-8674(91)90283-5

    Article  CAS  PubMed  Google Scholar 

  4. Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66(4):817–822. https://doi.org/10.1016/0092-8674(91)90125-i

    Article  CAS  PubMed  Google Scholar 

  5. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet 1(6):397–400. https://doi.org/10.1093/hmg/1.6.397

    Article  CAS  PubMed  Google Scholar 

  6. Verkerk AJMH, Pieretti M, Sutcliffe JS, Fu Y-H, Kuhl DPA, Pizzuti A, Warren ST (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914. https://doi.org/10.1016/0092-8674(91)90397-H

    Article  CAS  PubMed  Google Scholar 

  7. Ethridge LE, White SP, Mosconi MW, Wang J, Byerly MJ, Sweeney JA (2016) Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in fragile X syndrome. Transl Psychiatry 6(4):e787. https://doi.org/10.1038/tp.2016.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ethridge LE, White SP, Mosconi MW, Wang J, Pedapati EV, Erickson CA, Sweeney JA (2017) Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism 8(1):22. https://doi.org/10.1186/s13229-017-0140-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hodges JL, Yu X, Gilmore A, Bennett H, Tjia M, Perna JF, Zuo Y (2017) Astrocytic contributions to synaptic and learning abnormalities in a mouse model of fragile X syndrome. Biol Psychiatry 82(2):139–149. https://doi.org/10.1016/j.biopsych.2016.08.036

    Article  CAS  PubMed  Google Scholar 

  10. Jacobs S, Doering LC (2010) Astrocytes prevent abnormal neuronal development in the fragile X mouse. J Neurosci 30(12):4508–4514. https://doi.org/10.1523/jneurosci.5027-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29. https://doi.org/10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  12. Reynolds KE, Wong CR, Scott AL (2021) Astrocyte-mediated purinergic signaling is upregulated in a mouse model of Fragile X syndrome. Glia 69(7):1816–1832. https://doi.org/10.1002/glia.23997

    Article  CAS  PubMed  Google Scholar 

  13. Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Ozkan E, Barres BA (2009) Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139(2):380–392. https://doi.org/10.1016/j.cell.2009.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tran MD, Neary JT (2006) Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc Natl Acad Sci USA 103(24):9321–9326. https://doi.org/10.1073/pnas.0603146103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Galvez R, Gopal AR, Greenough WT (2003) Somatosensory cortical barrel dendritic abnormalities in a mouse model of the fragile X mental retardation syndrome. Brain Res 971(1):83–89. https://doi.org/10.1016/s0006-8993(03)02363-1

    Article  CAS  PubMed  Google Scholar 

  16. Wallingford J, Scott AL, Rodrigues K, Doering LC (2017) Altered developmental expression of the astrocyte-secreted factors Hevin and SPARC in the fragile X mouse model. Front Mol Neurosci 10:268–268. https://doi.org/10.3389/fnmol.2017.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown MS, Singel D, Hepburn S, Rojas DC (2013) Increased glutamate concentration in the auditory cortex of persons with autism and first-degree relatives: a (1)H-MRS study. Autism Res 6(1):1–10. https://doi.org/10.1002/aur.1260

    Article  PubMed  Google Scholar 

  18. Gibson JR, Bartley AF, Hays SA, Huber KM (2008) Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol 100(5):2615–2626. https://doi.org/10.1152/jn.90752.2008

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jacobs S, Doering LC (2009) Primary dissociated astrocyte and neuron co-culture. In L. C. Doering (Ed.), Protocols for Neural Cell Culture (Fourth Edition ed., pp. 269–284). New York, NY: Humana

  20. Cheng C, Lau SKM, Doering LC (2016) Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model. Mol Brain 9(1):74. https://doi.org/10.1186/s13041-016-0256-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krasovska V, Doering LC (2018) Regulation of IL-6 secretion by astrocytes via TLR4 in the fragile X mouse model. Front Mol Neurosci 11:272–272. https://doi.org/10.3389/fnmol.2018.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui JD, Xu ML, Liu EYL, Dong TTX, Lin HQ, Tsim KWK, Bi CWC (2016) Expression of globular form acetylcholinesterase is not altered in P2Y1R knock-out mouse brain. Chem Biol Interact 259(Pt B):291–294. https://doi.org/10.1016/j.cbi.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  23. D’Ambrosi N, Iafrate M, Saba E, Rosa P, Volonté C (2007) Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochim et Biophys Acta (BBA) - Biomembr 1768(6):1592–1599. https://doi.org/10.1016/j.bbamem.2007.03.020

    Article  CAS  Google Scholar 

  24. Sage CL, Marcus DC (2002) Immunolocalization of P2Y4 and P2Y2 purinergic receptors in strial marginal cells and vestibular dark cells. J Membr Biol 185(2):103–115. https://doi.org/10.1007/s00232-001-0116-z

    Article  CAS  PubMed  Google Scholar 

  25. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095. https://doi.org/10.1038/nature05704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kondo Y, Salibian-Barrera M, Zamar R (2016) RSKC: an R package for a robust and sparse K-means clustering algorithm. J Stat Softw 72(5):1–26. https://doi.org/10.18637/jss.v072.i05

    Article  Google Scholar 

  27. Balsor JL, Arbabi K, Singh D, Kwan R, Zaslavsky J, Jeyanesan E, Murphy KM (2021) A practical guide to sparse K-means clustering for studying molecular development of the human brain. Front Neurosci 15:668293. https://doi.org/10.3389/fnins.2021.668293

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(11)

  29. Kobak D, Berens P (2019) The art of using t-SNE for single-cell transcriptomics. Nat Commun 10(1):5416. https://doi.org/10.1038/s41467-019-13056-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wattenberg M, Viégas FB, Johnson I (2016) How to Use t-SNE Effectively

  31. Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3(3). https://doi.org/10.1101/cshperspect.a001800

  32. Gillespie LN (2003) Regulation of axonal growth and guidance by the neurotrophin family of neurotrophic factors. Clin Exp Pharmacol Physiol 30(10):724–733. https://doi.org/10.1046/j.1440-1681.2003.03909.x

    Article  CAS  PubMed  Google Scholar 

  33. Marsick BM, Flynn KC, Santiago-Medina M, Bamburg JR, Letourneau PC (2010) Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrin-1. Dev Neurobiol 70(8):565–588. https://doi.org/10.1002/dneu.20800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peterson TS, Thebeau CN, Ajit D, Camden JM, Woods LT, Wood WG, Weisman GA (2013) Up-regulation and activation of the P2Y(2) nucleotide receptor mediate neurite extension in IL-1β-treated mouse primary cortical neurons. J Neurochem 125(6):885–896. https://doi.org/10.1111/jnc.12252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pooler AM, Guez DH, Benedictus R, Wurtman WJ (2005) Uridine enhances neurite outgrowth in nerve growth factor-differentiated pheochromocytoma cells. Neuroscience 134:207–214

    Article  CAS  PubMed  Google Scholar 

  36. Heine C, Sygnecka K, Scherf N, Grohmann M, Bräsigk A, Franke H (2015) P2Y1 receptor mediated neuronal fibre outgrowth in organotypic brain slice co-cultures. Neuropharmacology 93:252–266. https://doi.org/10.1016/j.neuropharm.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  37. Sanchez S, Sayas CL, Lim F, Diaz-Nido J, Avila J, Wandosell F (2001) The inhibition of phosphatidylinositol-3-kinase induces neurite retraction and activates GSK3. J Neurochem 78(3):468–481. https://doi.org/10.1046/j.1471-4159.2001.00453.x

    Article  CAS  PubMed  Google Scholar 

  38. Van Kolen K, Slegers H (2006) Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks. Purinergic Signalling 2(3):451–469. https://doi.org/10.1007/s11302-006-9008-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Finkbeiner S (2000) Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol Life Sci 57(3):394–401. https://doi.org/10.1007/pl00000701

    Article  CAS  PubMed  Google Scholar 

  40. Rabacchi SA, Kruk B, Hamilton J, Carney C, Hoffman JR, Meyer SL, Baird DH (1999) BDNF and NT4/5 promote survival and neurite outgrowth of pontocerebellar mossy fiber neurons. J Neurobiol 40(2):254–269

    Article  CAS  PubMed  Google Scholar 

  41. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54(7):716–725. https://doi.org/10.1002/glia.20374

    Article  PubMed  PubMed Central  Google Scholar 

  42. Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ (2005) Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4(6):350–359. https://doi.org/10.1111/j.1601-183X.2005.00128.x

    Article  CAS  PubMed  Google Scholar 

  43. Morales J, Hiesinger PR, Schroeder AJ, Kume K, Verstreken P, Jackson FR, Hassan BA (2002) Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34(6):961–972. https://doi.org/10.1016/S0896-6273(02)00731-6

    Article  CAS  PubMed  Google Scholar 

  44. Pan L, Zhang YQ, Woodruff E, Broadie K (2004) The drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr Biol 14(20):1863–1870. https://doi.org/10.1016/j.cub.2004.09.085

    Article  CAS  PubMed  Google Scholar 

  45. Berzhanskaya J, Phillips MA, Shen J, Colonnese MT (2016) Sensory hypo-excitability in a rat model of fetal development in fragile X syndrome. Sci Rep 6:30769. https://doi.org/10.1038/srep30769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Graef JD, Wu H, Ng C, Sun C, Villegas V, Qadir D, Wallace O (2020) Partial FMRP expression is sufficient to normalize neuronal hyperactivity in fragile X neurons. Eur J Neurosci 51(10):2143–2157. https://doi.org/10.1111/ejn.14660

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu XS, Wu H, Krzisch M, Wu X, Graef J, Muffat J, Jaenisch R (2018) Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172(5):979–992e976. https://doi.org/10.1016/j.cell.2018.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moskalyuk A, Van De Vijver S, Verstraelen P, De Vos WH, Kooy RF, Giugliano M (2019) Single-cell and neuronal network alterations in an in vitro model of fragile X syndrome. Cereb Cortex 30(1):31–46. https://doi.org/10.1093/cercor/bhz068

    Article  Google Scholar 

  49. Gonçalves JT, Anstey JE, Golshani P, Portera-Cailliau C (2013) Circuit level defects in the developing neocortex of fragile X mice. Nat Neurosci 16(7):903–909. https://doi.org/10.1038/nn.3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, Frick A (2014) Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci 17(12):1701–1709. https://doi.org/10.1038/nn.386

    Article  CAS  PubMed  Google Scholar 

  51. Telias M, Kuznitsov-Yanovsky L, Segal M, Ben-Yosef D (2015) Functional deficiencies in fragile X neurons derived from human embryonic stem cells. J Neurosci 35(46):15295–15306. https://doi.org/10.1523/jneurosci.0317-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lossi L, Merighi A (2003) In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 69(5):287–312. https://doi.org/10.1016/s0301-0082(03)00051-0

    Article  CAS  PubMed  Google Scholar 

  53. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480):394–400. https://doi.org/10.1038/nature12776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bagni C, Greenough WT (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 6(5):376–387. https://doi.org/10.1038/nrn1667

    Article  CAS  PubMed  Google Scholar 

  55. Patel AB, Loerwald KW, Huber KM, Gibson JR (2014) Postsynaptic FMRP promotes the pruning of cell-to-cell connections among pyramidal neurons in the L5A neocortical network. J Neurosci 34(9):3413–3418. https://doi.org/10.1523/jneurosci.2921-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. El Idrissi A, Ding XH, Scalia J, Trenkner E, Brown WT, Dobkin C (2005) Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci Lett 377(3):141–146. https://doi.org/10.1016/j.neulet.2004.11.087

    Article  CAS  PubMed  Google Scholar 

  57. Fatemi SH, Folsom TD (2011) Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study. Mol Autism 2(1):6. https://doi.org/10.1186/2040-2392-2-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Higashimori H, Schin CS, Chiang MS, Morel L, Shoneye TA, Nelson DL, Yang Y (2016) Selective deletion of astroglial FMRP dysregulates glutamate transporter GLT1 and contributes to fragile X syndrome phenotypes in vivo. J Neurosci 36(27):7079–7094. https://doi.org/10.1523/jneurosci.1069-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Soni N, Koushal P, Reddy BV, Deshmukh R, Kumar P (2015) Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats. Epilepsy Behav 48:4–14. https://doi.org/10.1016/j.yebeh.2015.04.056

    Article  PubMed  Google Scholar 

  60. Reynolds KE, Krasovska V, Scott AL (2021) Converging purinergic and immune signaling pathways drive IL-6 secretion by fragile X cortical astrocytes via STAT3. J Neuroimmunol 361:577745. https://doi.org/10.1016/j.jneuroim.2021.577745

    Article  CAS  PubMed  Google Scholar 

  61. Alves M, Gomez-Villafuertes R, Delanty N, Farrell MA, O’Brien DF, Miras-Portugal MT, Engel T (2017) Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drug-refractory epilepsy. Epilepsia 58(9):1603–1614. https://doi.org/10.1111/epi.13850

    Article  CAS  PubMed  Google Scholar 

  62. Sukigara S, Dai H, Nabatame S, Otsuki T, Hanai S, Honda R, Itoh M (2014) Expression of astrocyte-related receptors in cortical dysplasia with intractable epilepsy. J Neuropathol Exp Neurol 73(8):798–806. https://doi.org/10.1097/nen.0000000000000099

    Article  CAS  PubMed  Google Scholar 

  63. Musumeci SA, Hagerman RJ, Ferri R, Bosco P, Bernardina BD, Tassinari CA, Elia M (1999) Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia 40(8):1092–1099. https://doi.org/10.1111/j.1528-1157.1999.tb00824.x

    Article  CAS  PubMed  Google Scholar 

  64. Naviaux RK, Curtis B, Li K, Naviaux JC, Bright AT, Reiner GE, Townsend J (2017) Low-dose suramin in autism spectrum disorder: a small, phase I/II, randomized clinical trial. Ann Clin Transl Neurol 4(7):491–505. https://doi.org/10.1002/acn3.424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Müller R-A, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK (2011) Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex 21(10):2233–2243. https://doi.org/10.1093/cercor/bhq296

    Article  PubMed  PubMed Central  Google Scholar 

  66. Paluszkiewicz SM, Olmos-Serrano JL, Corbin JG, Huntsman MM (2011) Impaired inhibitory control of cortical synchronization in fragile X syndrome. J Neurophysiol 106(5):2264–2272. https://doi.org/10.1152/jn.00421.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Testa-Silva G, Loebel A, Giugliano M, de Kock CP, Mansvelder HD, Meredith RM (2012) Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cereb Cortex 22(6):1333–1342. https://doi.org/10.1093/cercor/bhr224

    Article  PubMed  Google Scholar 

  68. Dajani DR, Uddin LQ (2016) Local brain connectivity across development in autism spectrum disorder: a cross-sectional investigation. Autism Res 9(1):43–54. https://doi.org/10.1002/aur.1494

    Article  PubMed  Google Scholar 

  69. Rio C-D, C. A., Huntsman MM (2014) The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome. Front Cell Neurosci 8(245). https://doi.org/10.3389/fncel.2014.00245

  70. Bureau I, Shepherd GMG, Svoboda K (2008) Circuit and plasticity defects in the developing somatosensory cortex of Fmr1 knock-out mice. J Neurosci 28(20):5178–5188. https://doi.org/10.1523/jneurosci.1076-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Laurie Doering for his valuable technical support and the Scottish Rite Charitable Foundation of Canada for funding this work.

Funding

This work was supported by a grant from the Scottish Rite Charitable Foundation of Canada (#21107) that supports mental health research.

Author information

Authors and Affiliations

Authors

Contributions

Kathryn Reynolds and Angela Scott wrote the main manuscript. Kathryn Reynolds prepared all figures. Kathryn Reynolds, Eileen Huang, Monica Sabbineni, Eliza Wiseman, Nadeem Murtaza, Matt Napier, Karun Singh, and Angela Scott were involved in data collection and experimental design contributing to Figs. 1, 2, 3, 4 and 5. Desmond Ahuja and Kathryn Murphy analyzed data and helped prepare Fig. 6. Angela Scott prepared Fig. 7. All authors reviewed the manuscript. Angela Scott received the grant for funding the project.

Corresponding author

Correspondence to Angela L. Scott.

Ethics declarations

Ethics Approval

All animal experimental protocols were authorized by the McMaster Animal Ethics Board (Animal Utilization Protocol 21-02-06), following Canadian Council on Animal Care policies.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynolds, K.E., Huang, E., Sabbineni, M. et al. Purinergic Signalling Mediates Aberrant Excitability of Developing Neuronal Circuits in the Fmr1 Knockout Mouse Model. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04181-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04181-w

Keywords

Navigation