Skip to main content
Log in

Comparison of Testosterone Extraction from Human Plasma Using MOFs (MIL-53(Al) and ZIF-8)-Based D-µ-SPE Coupled to HPLC–UV

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel technique utilizing metal–organic frameworks (MOFs), namely MIL-53(Al) and ZIF-8, has been developed for the extraction of testosterone from human plasma through dispersive micro-solid phase extraction (D-µ-SPE or DMSPE). The synthesized MOFs were subjected to characterization via Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The parameters affecting the extraction were optimized by response surface methodology (RSM). The optimal extraction conditions were determined to be 15 min for contact time, 1 mg for MIL-53(Al) amount, and 0.23% (w/v) for NaCl concentration. For ZIF-8, a contact time of 22 min, a sorbent amount of 5.4 mg, and a salt concentration of 0.34% (w/v) were obtained. Batch absorption studies were conducted to find appropriate kinetic and isotherm models. The results indicated that while testosterone absorption was favorable in both cases, MIL-53 (Al) had a higher absorption capacity than ZIF-8. Finally, the proposed method was subjected to analytical validation for determination of testosterone in plasma samples. Good analytical performance was achieved, including a dynamic range of 0.05–1 µg/mL using each of the sorbents. The precision (expressed as the relative standard deviation (RSD)) and accuracy (expressed as the percentage error) of the method for testosterone and MIL-53(Al) were found to be 3.40% and 2.79%, respectively, while for testosterone and ZIF-8, they were 4.24% and 4.22%, respectively. The method effectively extracted 97% and 96% of testosterone from spiked plasma samples using MIL-53(Al) and ZIF-8, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the finding of this study are available in the manuscript and the electronic supplementary material. Any more data are available from the corresponding author upon reasonable request.

Notes

  1. Cambridge Crystallographic Data Centre.

References

  1. Smith BK, Ward M (2023). Nurs Clin North Am. https://doi.org/10.1016/j.cnur.2023.07.001

    Article  PubMed  Google Scholar 

  2. Vermeulen A, Oddens B (1996) Androgens and the ageing male. The Parthenon Publishing Group, New York

    Google Scholar 

  3. Sun G, Xue J, Li L, Li X, Cui Y, Qiao B, Wei D, Li H (2020) Mol Med Rep 22:1576–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guzelce EC, Galbiati F, Goldman AL, Gattu AK, Basaria S, Bhasin S (2022) Best Pract Res Clin Endocrinol Metab 36:101683. https://doi.org/10.1016/j.beem.2022.101683

    Article  CAS  PubMed  Google Scholar 

  5. Jasuja R, Pencina KM, Peng L, Bhasin S (2022) Endocrinol Metab Clin North Am 51:63–75. https://doi.org/10.1016/j.ecl.2021.11.002

    Article  PubMed  Google Scholar 

  6. Morote J, Aguilar A, Trilla E (2023). Eur Urol Oncol. https://doi.org/10.1016/j.euo.2023.08.008

    Article  PubMed  Google Scholar 

  7. Schulman CC, Irani J, Morote J, Schalken JA, Montorsi F, Chlosta PL, Heidenreich A (2010) Eur Urol 58:65–74. https://doi.org/10.1016/j.eururo.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  8. Muram D, Baygani S (2014) J Sex Med 11:2826–2829. https://doi.org/10.1111/jsm.12656

    Article  CAS  PubMed  Google Scholar 

  9. Welker KM, Lassetter B, Brandes CM, Prasad S, Koop DR, Mehta PH (2016) Psychoneuroendocrinology 71:180–188. https://doi.org/10.1016/j.psyneuen.2016.05.022

    Article  CAS  PubMed  Google Scholar 

  10. Young J (2023) Ann Endocrinol 84:401–405. https://doi.org/10.1016/j.ando.2023.03.025

    Article  Google Scholar 

  11. Mirzajani R, Ramezani Z, Kardani F (2017) Microchem J 130:93–101. https://doi.org/10.1016/j.microc.2016.08.009

    Article  CAS  Google Scholar 

  12. Zhang Z, Duan H, Zhang L, Chen X, Liu W, Chen G (2009) Talanta 78:1083–1089. https://doi.org/10.1016/j.talanta.2009.01.022

    Article  CAS  PubMed  Google Scholar 

  13. Khezeli T, Daneshfar A (2017) TrAC Trends Anal Chem 89:99–118. https://doi.org/10.1016/j.trac.2017.01.004

    Article  CAS  Google Scholar 

  14. Wang D, Chen X, Feng J, Sun M (2022) J Chromatogr A 1675:463157. https://doi.org/10.1016/j.chroma.2022.463157

    Article  CAS  PubMed  Google Scholar 

  15. Manaf NA, Saad B, Mohamed MH, Wilson LD, Latiff AA (2018) J Chromatogr A 1543:23–33. https://doi.org/10.1016/j.chroma.2018.02.032

    Article  CAS  PubMed  Google Scholar 

  16. George MJ, Marjanovic L, Williams DBG (2015) Talanta 144:445–450. https://doi.org/10.1016/j.talanta.2015.06.070

    Article  CAS  PubMed  Google Scholar 

  17. Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2015) TrAC Trends Anal Chem 73:19–38. https://doi.org/10.1016/j.trac.2015.04.026

    Article  CAS  Google Scholar 

  18. Li N, Zheng J, Yu L-D, Tong Y-J, Gong X, Hou Y, Chen G, Xu J, Zhu F, Ouyang G (2023) J Hazard Mater 461:132477. https://doi.org/10.1016/j.jhazmat.2023.132477

    Article  CAS  PubMed  Google Scholar 

  19. Naghdi S, Shahrestani MM, Zendehbad M, Djahaniani H, Kazemian H, Eder D (2023) J Hazard Mater 442:130127

    Article  CAS  PubMed  Google Scholar 

  20. Ma M, Wu T, Hu Z, Sun G, Zhang S (2022) Microchem J 172:106916. https://doi.org/10.1016/j.microc.2021.106916

    Article  CAS  Google Scholar 

  21. Zhang Y, Li N, Xu Y, Yang M, Luo X, Hou C, Huo D (2023) Microchem J 187:108316. https://doi.org/10.1016/j.microc.2022.108316

    Article  CAS  Google Scholar 

  22. Afarinandeh A, Heidari K, Barczak M, Abdellattif MH, Izadi Yazdanaabadi Z, Mohammadi AA, Haghighat GA, Shams M (2023) Arab J Chem 16:104837. https://doi.org/10.1016/j.arabjc.2023.104837

    Article  CAS  Google Scholar 

  23. Martín N, Cirujano FG (2020) Org Biomol Chem 18:8058–8073. https://doi.org/10.1039/d0ob01571g

    Article  CAS  PubMed  Google Scholar 

  24. Bellido-Milla D, Vidal H, Núñez M, Ahrouch M, Gatica JM (2023) J Water Process Eng 55:104196. https://doi.org/10.1016/j.jwpe.2023.104196

    Article  Google Scholar 

  25. Ismail S (2021) Progress Chem Biochem Res 4:68–79. https://doi.org/10.22034/pcbr.2021.120448

    Article  CAS  Google Scholar 

  26. Mirnezami SMs, Zare Kazemabadi F, Heydarinasab A (2021) Progress Chem Biochem Res 4:191–206. https://doi.org/10.22034/pcbr.2021.277907.1182

  27. Saeid Rostami M, Mehdi Khodaei M (2024) Fuel 356:129598. https://doi.org/10.1016/j.fuel.2023.129598

    Article  CAS  Google Scholar 

  28. Shahsavari S, Derikvand Z (2022) Progress Chem Biochem Res 5:338–350. https://doi.org/10.22034/pcbr.2022.351031.1228

    Article  CAS  Google Scholar 

  29. Khan R, Liu W-M, Haq IU, Zhen H-G, Mao H, Zhao Z-P (2023) J Membr Sci 686:122014. https://doi.org/10.1016/j.memsci.2023.122014

    Article  CAS  Google Scholar 

  30. Han B, Chakraborty A (2023) Chem Eng J 472:145137. https://doi.org/10.1016/j.cej.2023.145137

    Article  CAS  Google Scholar 

  31. Xu W, Xu Y, Liu S, Fan J, Hu L, Zhang R, Fang Z, Chen X, Peng J (2023) J Solid State Chem 326:124206. https://doi.org/10.1016/j.jssc.2023.124206

    Article  CAS  Google Scholar 

  32. Ahadi N, Askari S, Fouladitajar A, Akbari I (2022) Sci Rep 12:2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang X, Liu G, Xu D, Xu X, Li L, Zheng S, Lin H, Gao H (2018) Appl Sci 8:959

    Article  Google Scholar 

  34. Lirio S, Liu W-L, Lin C-L, Lin C-H, Huang H-Y (2016) J Chromatogr A 1428:236–245

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Wang J, Du T, Kou H, Du X, Lu X (2019) New J Chem 43:2783–2789

    Article  CAS  Google Scholar 

  36. Yang X-Q, Yang C-X, Yan X-P (2013) J Chromatogr A 1304:28–33

    Article  CAS  PubMed  Google Scholar 

  37. Lu S, Hummel M, Chen K, Zhou Y, Kang S, Gu Z (2020) Electrochem Commun 114:106715

    Article  CAS  Google Scholar 

  38. Rahmani E, Rahmani M (2018) Ind Eng Chem Res 57:169–178. https://doi.org/10.1021/acs.iecr.7b04206

    Article  CAS  Google Scholar 

  39. Warfsmann J, Tokay B, Champness NR (2018) CrystEngComm 20:4666–4675. https://doi.org/10.1039/C8CE00913A

    Article  CAS  Google Scholar 

  40. Fu F, Zheng B, Xie L-H, Du H, Du S, Dong Z (2018) Crystals 8:367

    Article  Google Scholar 

  41. Lee Y-R, Jang M-S, Cho H-Y, Kwon H-J, Kim S, Ahn W-S (2015) Chem Eng J 271:276–280

    Article  CAS  Google Scholar 

  42. Wu C, Liu Q, Chen R, Liu J, Zhang H, Li R, Takahashi K, Liu P, Wang J (2017) ACS Appl Mater Interfaces 9:11106–11115

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Jia Y (2018) RSC Adv 8:31471–31477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mortazavian E, Amini M, Dorkoosh F, Amini H, Khoshayand M, Amini T, Rafiee-Tehrani M (2014) J Drug Deliv Sci Technol 24:40–49

    Article  CAS  Google Scholar 

  45. Yan J, Jiang S, Ji S, Shi D, Cheng H (2015) Sci China Chem 58:1544–1552. https://doi.org/10.1007/s11426-015-5359-0

    Article  CAS  Google Scholar 

  46. Tan Z-D, Tan H-Y, Shi X-Y, Zhuan J, Yan Y-F, Yin Z (2015) Inorg Chem Commun 61:128–131. https://doi.org/10.1016/j.inoche.2015.09.004

    Article  CAS  Google Scholar 

  47. Zhang Y, Jia Y, Li M, La H (2018) Sci Rep 8:9597. https://doi.org/10.1038/s41598-018-28015-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zuliani A, Khiar N, Carrillo-Carrión C (2023) Anal Bioanal Chem 415:2005–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rastkari N, Akbari S, Brahmand MB, Takhvar A, Ahmadkhaniha R (2021) J Environ Health Sci Eng 19:1735–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi C, Wang K, Chen C, Cao Y, Zhou G, Wang J, Li C (2024) Sep Purif Technol 330:125303

    Article  CAS  Google Scholar 

  51. Seoane B, Sorribas S, Mayoral Á, Téllez C, Coronas J (2015) Microporous Mesoporous Mater 203:17–23

    Article  CAS  Google Scholar 

  52. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G (2004) Chem Eur J 10:1373–1382

  53. Badawy ME, El-Nouby MA, Kimani PK, Lim LW, Rabea EI (2022) Anal Sci 38:1457–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manousi N, Plastiras O-E, Kalogiouri NP, Zacharis CK, Zachariadis GA (2021) Separations 8:60

    Article  CAS  Google Scholar 

  55. Wu C-s, Xiong Z-h (2015) Li C, Zhang J-m. RSC Adv 5:82127–82137

    Article  CAS  Google Scholar 

  56. Pereira A, Ferreira AF, Rodrigues A, Ribeiro AM, Regufe MJ (2022) Microporous Mesoporous Mater 331:111648

    Article  CAS  Google Scholar 

  57. Gao Y, Liu K, Kang R, Xia J, Yu G, Deng S (2018) J Hazard Mater 359:248–257

    Article  CAS  PubMed  Google Scholar 

  58. Ganesan A, Metz PC, Thyagarajan R, Chang Y, Purdy SC, Jayachandrababu KC, Page K, Sholl DS, Nair S (2023) J Phys Chem C 127:23956–23965

    Article  CAS  Google Scholar 

  59. Li J-R, Kuppler RJ, Zhou H-C (2009) Chem Soc Rev 38:1477–1504

    Article  CAS  PubMed  Google Scholar 

  60. Zhou W (2022) Research on the mechanism and application of rigid and flexible metal-organic frameworks in selective adsorption. J Phys: Conf Ser IOP Publishing 2254:012028

  61. Wang H, Wang P, Zhao X, Ye C, Zheng X, Cao W (2021) J Sep Sci 44:1939–1949. https://doi.org/10.1002/jssc.202001062

    Article  CAS  PubMed  Google Scholar 

  62. Ng BH, Yuen KH (2003) J Chromatogr B 793:421–426. https://doi.org/10.1016/S1570-0232(03)00326-X

    Article  CAS  Google Scholar 

  63. Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodríguez JJ (2015) Anal Methods 7:5996–6005. https://doi.org/10.1039/C5AY00807G

    Article  CAS  Google Scholar 

  64. Koren L, Ng ES, Soma KK, Wynne-Edwards KE (2012) PLoS ONE 7:e32496. https://doi.org/10.1371/journal.pone.0032496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Speltini A, Merlo F, Maraschi F, Villani L, Profumo A (2021) Talanta 221:121496. https://doi.org/10.1016/j.talanta.2020.121496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was part of a PhD thesis supported by Tehran University of Medical Sciences (grant No: 40258).

Funding

This study was part of a PhD thesis supported by Tehran University of Medical Sciences (grant No: 40258).

Author information

Authors and Affiliations

Authors

Contributions

SA wrote the article, AT completed figures, ES, RA and AM designed and performed all experiments and provided compounds for testing, MRK performed a statistical analysis of the results, ES, MA and AT reviewed the manuscript.

Corresponding authors

Correspondence to Effat Souri or Reza Ahmadkhaniha.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Informed Consent

The studies were not conducted on humans or living organisms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 219 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, S., Takhvar, A., Souri, E. et al. Comparison of Testosterone Extraction from Human Plasma Using MOFs (MIL-53(Al) and ZIF-8)-Based D-µ-SPE Coupled to HPLC–UV. Chromatographia (2024). https://doi.org/10.1007/s10337-024-04329-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10337-024-04329-9

Keywords

Navigation