Skip to main content
Log in

Algorithms for Solving the Inverse Scattering Problem for the Manakov Model

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper considers algorithms for solving inverse scattering problems based on the discretization of the Gelfand–Levitan–Marchenko integral equations, associated with the system of nonlinear Schrödinger equations of the Manakov model. The numerical algorithm of the first order approximation for solving the scattering problem is reduced to the inversion of a series of nested block Toeplitz matrices using the Levinson-type bordering method. Increasing the approximation accuracy violates the Toeplitz structure of block matrices. Two algorithms are described that solve this problem for second order accuracy. One algorithm uses a block version of the Levinson bordering algorithm, which recovers the Toeplitz structure of the matrix by moving some terms of the systems of equations to the right-hand side. Another algorithm is based on the Toeplitz decomposition of an almost block-Toeplitz matrix and the Tyrtyshnikov bordering algorithm. The speed and accuracy of calculations using the presented algorithms are compared on an exact solution (the Manakov vector soliton).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys. JETP 38 (2), 248–253 (1974).

    Google Scholar 

  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).

    Google Scholar 

  3. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” J. Exp. Theor. Phys. 34 (1), 62–69 (1972).

    MathSciNet  Google Scholar 

  4. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Nauka, Moscow, 1980; Consultants Bureau, New York, 1984).

  5. A. I. Maimistov, A. M. Basharov, S. O. Elyutin, and Y. M. Sklyarov, “Present state of self-induced transparency theory,” Phys. Rep. 191 (1), 1 (1990).

    Article  Google Scholar 

  6. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Springer Science and Business Media, Dordrecht, 2013).

    Google Scholar 

  7. L. L. Frumin, “Algorithms for solving scattering problems for the Manakov model of nonlinear Schrödinger equations,” J. Inv. Ill-Posed Probl. 29 (2), 369 (2021).

    Article  MathSciNet  Google Scholar 

  8. O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, “Efficient numerical method of the fiber Bragg grating synthesis,” J. Opt. Soc. Am. B 24 (7), 1451 (2007).

    Article  MathSciNet  Google Scholar 

  9. L. L. Frumin, O. V. Belai, E. V. Podivilov, and D. A. Shapiro, “Efficient numerical method for solving the direct Zakharov–Shabat scattering problem,” J. Opt. Soc. Am. B 32, 290 (2015).

    Article  Google Scholar 

  10. R. Blahut, Fast Algorithms for Digital Signal Processing (Addison-Wesley, Reading, Mass., 1985).

    Google Scholar 

  11. A. Buryak, J. Bland-Hawthorn, and V. Steblina, “Comparison of inverse scattering algorithms for designing ultrabroadband fibre Bragg gratings,” Opt. Express 17 (3), 1995 (2009).

    Article  Google Scholar 

  12. O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, “Inverse scattering problem for gratings with deep modulation,” Laser Phys. 20 (2), 318 (2010).

    Article  Google Scholar 

  13. O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, “Inverse scattering for the one-dimensional Helmholtz equation: Fast numerical method,” Opt. Lett. 33 (18), 2101 (2008).

    Article  Google Scholar 

  14. L. L. Frumin, A. A. Gelash, and S. K. Turitsyn, “New approaches to coding information using inverse scattering transform,” Phys. Rev. Lett. 118 (22), 223901 (2017).

  15. S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian, and S. A. Derevyanko, “Nonlinear Fourier transform for optical data processing and transmission: Advances and perspectives,” Optica 4 (3), 307 (2017).

    Article  Google Scholar 

  16. E. E. Tyrtyshnikov, Toeplitz Matrices, Some of Their Analogues, and Applications (Akad. Nauk SSSR, Moscow, 1989) [in Russian].

    Google Scholar 

  17. E. E. Tyrtyshnikov, “New fast algorithms for systems with Hankel and Toeplitz matrices,” USSR Comput. Math. Math. Phys. 29 (3), 1–6 (1989).

    Article  MathSciNet  Google Scholar 

  18. H. Akaike, “Block Toeplitz matrix inversion,” SIAM J. Appl. Math. 24 (2), 234 (1973).

    Article  MathSciNet  Google Scholar 

  19. O. V. Belai, “Fast second-order accurate numerical method for solving an inverse scattering method,” Kvant. Elektron. 52 (11), 1039 (2022).

    Google Scholar 

  20. V. V. Voevodin and E. E. Tyrtyshnikov, Computational Processes with Toeplitz Matrices (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-22-00653.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Belai, L. L. Frumin or A. E. Chernyavsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belai, O.V., Frumin, L.L. & Chernyavsky, A.E. Algorithms for Solving the Inverse Scattering Problem for the Manakov Model. Comput. Math. and Math. Phys. 64, 453–464 (2024). https://doi.org/10.1134/S0965542524030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542524030059

Keywords:

Navigation