Skip to main content

Advertisement

Log in

RyR2 Stabilizer Attenuates Cardiac Hypertrophy by Downregulating TNF-α/NF-κB/NLRP3 Signaling Pathway through Inhibiting Calcineurin

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.

Graphical Abstract

Schematic diagram of the mechanism of Dantrolene. Dantrolene attenuates cardiac hypertrophy through inhibition of TNF-α/NF-κB/NLRP3 pathway by downregulating Calcineurin/NFAT3 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and-or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ACTA1:

Actin, alpha 1

BW:

Body weight

CH:

Cardial hypertrophy

CPVT:

Catecholaminergic polymorphic ventricular tachycardia

FDR:

False discovery rate

GO:

Gene ontology

HW:

Heart weight

H&E taining:

Hematoxylin & Eosin staining

HDAC:

Histone deacetylase

IκB:

Inhibitor of NF-κB

LVEDP:

Left ventricular diastolic pressure

LVESP:

Left ventricular systolic pressure

LCC:

L-type calcium channel

MH:

Malignant hyperthermia

mTAC:

Minimally invasive transverse aortic constriction

MEF-2:

Myocyte enhancer factor-2

β-MHC:

Myosin, heavy polypeptide 7, cardiac muscle, and beta

NCX:

Na+-Ca2+exchanger

NPPA:

Natriuretic peptide type A

NPPB:

Natriuretic peptide type B

NRCM:

Neonatal rat cardiomyocyte

NF-κB:

Nuclear factor kappa-B

PE:

Phenylephrine

RyR2:

Ryanodine receptor 2

SERCA2:

Sarcoplasmic reticulum calcium-transporting ATPases 2

TL:

Tibia length

TAC:

Transverse aortic contraction

WGA taining:

Wheat Germ Agglutinin staining

References

  1. Pandey A, Keshvani N, Ayers C, Correa A, Drazner MH, Lewis A, et al. Association of cardiac injury and malignant left ventricular hypertrophy with risk of heart failure in African Americans: The Jackson heart study. JAMA Cardiol 2019;4(1):51–8. https://doi.org/10.1001/jamacardio.2018.4300.

  2. Jónsdóttir LS, Sigfússon N, Gudnason V, Sigvaldason H, Thorgeirsson G. Do lipids, blood pressure, diabetes, and smoking confer equal risk of myocardial infarction in women as in men? The Reykjavik Study. J Cardiovasc Risk. 2002;9(2):67–76.

    Article  PubMed  Google Scholar 

  3. Kang YJ. Cardiac hypertrophy: a risk factor for QT-prolongation and cardiac sudden death. Toxicol Pathol. 2006;34(1):58–66. https://doi.org/10.1080/01926230500419421.

    Article  CAS  PubMed  Google Scholar 

  4. Messerli FH, Schmieder R. Left ventricular hypertrophy. A cardiovascular risk factor in essential hypertension. Drugs. 1986;31(Suppl 4):192–201. https://doi.org/10.2165/00003495-198600314-00023.

    Article  PubMed  Google Scholar 

  5. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600. https://doi.org/10.1038/nrm1983.

    Article  CAS  PubMed  Google Scholar 

  6. Soudani N, Ghantous CM, Farhat Z, Shebaby WN, Zibara K, Zeidan A. Calcineurin/NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch. Front Physiol. 2016;7:433. https://doi.org/10.3389/fphys.2016.00433.

    Article  PubMed  PubMed Central  Google Scholar 

  7. You J, Wu J, Zhang Q, Ye Y, Wang S, Huang J, et al. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am J Physiol Heart Circ Physiol. 2018;314(3):H552–62. https://doi.org/10.1152/ajpheart.00212.2017.

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka S, Fujio Y, Nakayama H. Caveolae-specific CaMKII signaling in the regulation of voltage-dependent calcium channel and cardiac hypertrophy. Front Physiol. 2018;9:1081. https://doi.org/10.3389/fphys.2018.01081.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol. 2017;149(12):1065–89. https://doi.org/10.1085/jgp.201711878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jayaraman T, Brillantes AM, Timerman AP, Fleischer S, Erdjument-Bromage H, Tempst P, et al. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem. 1992;267(14):9474–7.

    Article  CAS  PubMed  Google Scholar 

  11. Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C, et al. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol. 2003;160(6):919–28. https://doi.org/10.1083/jcb.200211012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Respress JL, van Oort RJ, Li N, Rolim N, Dixit SS, deAlmeida A, et al. Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res. 2012;110(11):1474–83. https://doi.org/10.1161/circresaha.112.268094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alsina KM, Hulsurkar M, Brandenburg S, Kownatzki-Danger D, Lenz C, Urlaub H, et al. Loss of protein phosphatase 1 regulatory subunit PPP1R3A promotes atrial fibrillation. Circulation. 2019;140(8):681–93. https://doi.org/10.1161/circulationaha.119.039642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zamiri N, Massé S, Ramadeen A, Kusha M, Hu X, Azam MA, et al. Dantrolene improves survival after ventricular fibrillation by mitigating impaired calcium handling in animal models. Circulation. 2014;129(8):875–85. https://doi.org/10.1161/circulationaha.113.005443.

    Article  CAS  PubMed  Google Scholar 

  15. Kaur H, Katyal N, Yelam A, Kumar K, Srivastava H, Govindarajan R. Malignant hyperthermia. Mo Med. 2019;116(2):154–9.

    PubMed  PubMed Central  Google Scholar 

  16. Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F. Dantrolene–a review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004;59(4):364–73. https://doi.org/10.1111/j.1365-2044.2004.03658.x.

    Article  CAS  PubMed  Google Scholar 

  17. Shannon TR, Lew WY. Diastolic release of calcium from the sarcoplasmic reticulum: a potential target for treating triggered arrhythmias and heart failure. J Am Coll Cardiol. 2009;53(21):2006–8. https://doi.org/10.1016/j.jacc.2009.02.032.

    Article  PubMed  Google Scholar 

  18. Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, et al. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol. 2009;53(21):1993–2005. https://doi.org/10.1016/j.jacc.2009.01.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marks AR. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest. 2013;123(1):46–52. https://doi.org/10.1172/jci62834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kajii T, Kobayashi S, Shiba S, Fujii S, Tamitani M, Kohno M, et al. Dantrolene prevents ventricular tachycardia by stabilizing the ryanodine receptor in pressure- overload induced failing hearts. Biochem Biophys Res Commun. 2020;521(1):57–63. https://doi.org/10.1016/j.bbrc.2019.10.071.

    Article  CAS  PubMed  Google Scholar 

  21. Maxwell JT, Domeier TL, Blatter LA. Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. Am J Physiol Heart Circ Physiol. 2012;302(4):H953–63. https://doi.org/10.1152/ajpheart.00936.2011.

    Article  CAS  PubMed  Google Scholar 

  22. Ohkusa T, Hisamatsu Y, Ueyama T, Kobayashi S, Yano M, Maekawa T, et al. Effects of dantrolene sodium on progression of left ventricular hypertrophy induced by pressure overload in rats. J Cardiovasc Pharmacol. 1998;31(4):520–4. https://doi.org/10.1097/00005344-199804000-00008.

    Article  CAS  PubMed  Google Scholar 

  23. Hamada T, Gangopadhyay JP, Mandl A, Erhardt P, Ikemoto N. Defective regulation of the ryanodine receptor induces hypertrophy in cardiomyocytes. Biochem Biophys Res Commun. 2009;380(3):493–7. https://doi.org/10.1016/j.bbrc.2009.01.152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wheatley AM, Butkow N, Grote J, Musiker J, Rosendorff C. The effect of propranolol, verapamil and dantrolene treatment on cardiac hypertrophy, enhanced myocardial contractility and tachycardia in the hyperthyroid rat. Pharmacol Res. 1990;22(3):307–18. https://doi.org/10.1016/1043-6618(90)90728-v.

    Article  CAS  PubMed  Google Scholar 

  25. Wu Z, Yang B, Liu C, Liang G, Eckenhoff MF, Liu W, et al. Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis Assoc Disord. 2015;29(3):184–91. https://doi.org/10.1097/wad.0000000000000075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quinn JL, Huynh T, Uaesoontrachoon K, Tatem K, Phadke A, Van der Meulen JH, et al. Effects of dantrolene therapy on disease phenotype in dystrophin deficient mdx mice. PLoS Curr. 2013;5. https://doi.org/10.1371/currents.md.e246cf493a7edb1669f42fb735936b46.

  27. Wang DW, Mokhonova EI, Kendall GC, Becerra D, Naeini YB, Cantor RM, et al. Repurposing dantrolene for long-term combination therapy to potentiate antisense-mediated DMD exon skipping in the mdx mouse. Mol Ther Nucleic Acids. 2018;11:180–91. https://doi.org/10.1016/j.omtn.2018.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dawn B, Guo Y, Rezazadeh A, Huang Y, Stein AB, Hunt G, et al. Postinfarct cytokine therapy regenerates cardiac tissue and improves left ventricular function. Circ Res. 2006;98(8):1098–105. https://doi.org/10.1161/01.Res.0000218454.76784.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.

    Article  CAS  PubMed  Google Scholar 

  31. Xia H, Chen D, Wu Q, Wu G, Zhou Y, Zhang Y, et al. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochim Biophys Acta Gene Regul Mech. 2017;1860(9):911–21. https://doi.org/10.1016/j.bbagrm.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng Y, Qin K, Huang N, Zhou Z, Xiong H, Zhao J, et al. Cytokeratin 18 regulates the transcription and alternative splicing of apoptotic-related genes and pathways in HeLa cells. Oncol Rep. 2019;42(1):301–12. https://doi.org/10.3892/or.2019.7166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1–2):279–84. https://doi.org/10.1016/s0166-4328(01)00297-2.

    Article  CAS  PubMed  Google Scholar 

  34. Peng C, Luo X, Li S, Sun H. Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice. Mol Biosyst. 2017;13(4):714–24. https://doi.org/10.1039/c6mb00692b.

    Article  CAS  PubMed  Google Scholar 

  35. Gao S, Liu XP, Wei LH, Lu J, Liu P. Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy. Can J Physiol Pharmacol. 2018;96(4):352–8. https://doi.org/10.1139/cjpp-2017-0282.

    Article  CAS  PubMed  Google Scholar 

  36. Shaikh F, Bhatt LK. Cardioprotective effect of Polymyxin-B and Dantrolene combination on isoproterenol-induced hypertrophic cardiomyopathy in rats, via attenuation of Calmodulin-dependent protein kinase II. Chem Biodivers. 2022. https://doi.org/10.1002/cbdv.202200309.

    Article  PubMed  Google Scholar 

  37. Kohno M, Kobayashi S, Yamamoto T, Yoshitomi R, Kajii T, Fujii S, et al. Enhancing calmodulin binding to cardiac ryanodine receptor completely inhibits pressure-overload induced hypertrophic signaling. Commun Biol. 2020;3(1):714. https://doi.org/10.1038/s42003-020-01443-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. deAlmeida AC, van Oort RJ, Wehrens XH. Transverse aortic constriction in mice. J Vis Exp. 2010;(38):1729. https://doi.org/10.3791/1729.

  39. Zaw AM, Williams CM, Law HK, Chow BK. Minimally invasive transverse aortic constriction in mice. J Vis Exp 2017;(121):55293. https://doi.org/10.3791/55293.

  40. Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun. 2004;322(4):1178–91. https://doi.org/10.1016/j.bbrc.2004.07.121.

    Article  CAS  PubMed  Google Scholar 

  41. Anderson ME, Brown JH, Bers DM. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51(4):468–73. https://doi.org/10.1016/j.yjmcc.2011.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Zhao Z, Wen J, Wang Y, Zhao M, Peng L, et al. TNF-α differently regulates TRPV2 and TRPV4 channels in human dental pulp cells. Int Endod J. 2019;52(11):1617–28. https://doi.org/10.1111/iej.13174.

    Article  CAS  PubMed  Google Scholar 

  43. Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease. Cytokine. 2018;101:26–32. https://doi.org/10.1016/j.cyto.2016.08.035.

    Article  CAS  PubMed  Google Scholar 

  44. Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 2017;18(8):861–9. https://doi.org/10.1038/ni.3772.

    Article  CAS  PubMed  Google Scholar 

  45. An Y, Zhang H, Wang C, Jiao F, Xu H, Wang X, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. Faseb j. 2019;33(11):12515–27. https://doi.org/10.1096/fj.201802805RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haskó G, Szabó C, Németh ZH, Lendvai B, Vizi ES. Modulation by dantrolene of endotoxin-induced interleukin-10, tumour necrosis factor-alpha and nitric oxide production in vivo and in vitro. Br J Pharmacol. 1998;124(6):1099–106. https://doi.org/10.1038/sj.bjp.0701934.PubMedPMID:9720779;PubMedCentralPMCID:PMCPMC1565490.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abdullah HI, Pedraza PL, Hao S, Rodland KD, McGiff JC, Ferreri NR. NFAT regulates calcium-sensing receptor-mediated TNF production. Am J Physiol Renal Physiol. 2006;290(5):F1110–7. https://doi.org/10.1152/ajprenal.00223.2005.

    Article  CAS  PubMed  Google Scholar 

  48. Liu FX, Wu CL, Zhu ZA, Li MQ, Mao YQ, Liu M, et al. Calcineurin/NFAT pathway mediates wear particle-induced TNF-α release and osteoclastogenesis from mice bone marrow macrophages in vitro. Acta Pharmacol Sin. 2013;34(11):1457–66. https://doi.org/10.1038/aps.2013.99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Howe CJ, Lahair MM, McCubrey JA, Franklin RA. Redox regulation of the calcium/calmodulin-dependent protein kinases. J Biol Chem. 2004;279(43):44573–81. https://doi.org/10.1074/jbc.M404175200.

    Article  CAS  PubMed  Google Scholar 

  50. Parra V, Rothermel BA. Calcineurin signaling in the heart: The importance of time and place. J Mol Cell Cardiol. 2017;103:121–36. https://doi.org/10.1016/j.yjmcc.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund of Natural Science Foundation of China (grant number 81970209). Thanks are also due to Professor Nanthakumar for the valuable discussion.

Funding

This study was supported by the fund of Natural Science Foundation of China (grant number 81970209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan Sun or Ping Yang.

Ethics declarations

Ethics Statement

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. No human studies were carried out by the authors for this article.

Conflict of Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Figure 1.

The expression of eight DEGs in the Treated and Untreated TAC group. The left 2 bars of each figure show the relative gene expression detected by transcriptome sequencing. The right two bars show the gene expression of the same gene verified by qRT-PCR. *P < 0.05, **P < 0.01, ***P < 0.001. (PNG 591 kb)

High resolution image (TIF 25129 kb)

Supplemental Figure 2.

Dose screening test of PE and dantrolene in NRCMs. Cardiomyocytes were treated with various concentrations of PE (0, 1, 10, 50, 100, and 500 μM) for 24 h. (A) The cell viability decreased with an increase in the concentration of PE. B. The expression of hypertrophy markers increased with an increase in PE concentration. (C-E) The PE intervention myocardial hypertrophy group was treated with 50 μM PE. In addition to PE, the dantrolene intervention group was treated with 0, 1, 10, 50, 100, and 500 μM of dantrolene for 24 h. Cell viability (C) and quantitative protein for hypertrophy marker BNP (D, E) were detected to determine the dantrolene concentration. *compared with the control group, P < 0.05, **compared with the control group, P < 0.01, ***compared with the control group, P < 0.001. #compared with the PE group, P < 0.05,##compared with the control group, P < 0.01, ### compared with the control group, P < 0.001. (PNG 458 kb)

High resolution image (TIF 7664 kb)

Supplemental Figure 3.

The effects of dantrolene on PE-induced hypertrophy in NRCMs. The changes in protein expression related to calcineurin/NFAT3 pathways in NRCMs under the effect of dantrolene, FK506 or CnA overexpression. **compared with the control group, P < 0.01, ***compared with the control group, P < 0.001. ## compared with the PE control group, P < 0.01, ###compared with the PE control group, P < 0.001. △△compared with the PE + dantrolene group, P < 0.01, △△△compared with the PE+ dantrolene group, P < 0.001. (PNG 484 kb)

High resolution image (TIF 54817 kb)

Supplemental Table 1

(DOCX 29 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Li, S., Liu, X. et al. RyR2 Stabilizer Attenuates Cardiac Hypertrophy by Downregulating TNF-α/NF-κB/NLRP3 Signaling Pathway through Inhibiting Calcineurin. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-023-10376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-023-10376-8

Keywords

Navigation