Skip to main content
Log in

Sustainability of Existing Phase of Extruded Fiber-Reinforced Polylactic Acid under Dynamic Shock Loading Conditions

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study provides extensive information regarding the resistance of the material to maintain its properties under dynamic loading conditions. The effects of dynamic loading conditions on PLA reinforced with various fibers produced via the material extrusion were investigated. Specifically, it examined the material's response to an increase in the number of shock impacts in comparison to the control specimen. X-ray diffraction analysis and Raman spectroscopy were employed to validate the material's amorphous composition and crystallinity. The morphological alterations were illustrated using scanning electron microscopy images and digital microscopic images. Carbon fiber-reinforced PLA demonstrated superior resistance to phase transitions under impact loading conditions compared to other materials. The agreement between the x-ray diffraction and Raman spectroscopy results confirms the material's reliability under dynamic loading conditions. The phases of pure PLA and PLA-GF remained unchanged until 50 shocks, at which point their crystallinity transformed into an amorphous state. The PLA-CF did not exhibit any phase alterations until 150 shocks. The tensile strength of the specimens is assessed following 50 shock exposure cycles, revealing a notable decrease in the tensile strength of PLA and PLA-GF. In contrast, PLA-CF exhibits only a slight decline, due to its improved resistance to phase change.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available in public and can be shared by the corresponding author on request.

References

  1. P. Wady, A. Wasilewski, L. Brock, R. Edge, A. Baidak, C. McBride, L. Leay, A. Griffiths, and C. Vallés, Effect of Ionising Radiation on the Mechanical and Structural Properties of 3D Printed Plastics, Addit. Manuf., 2019, 2020(31), p 100907. https://doi.org/10.1016/j.addma.2019.100907

    Article  CAS  Google Scholar 

  2. Y. Lyu, Y. Chen, Z. Lin, J. Zhang, and X. Shi, Manipulating Phase Structure of Biodegradable PLA/PBAT System: Effects on Dynamic Rheological Responses and 3D Printing, Compos. Sci. Technol., 2020, 200, p 108399. https://doi.org/10.1016/j.compscitech.2020.108399

    Article  CAS  Google Scholar 

  3. Y. Liu, W. Zhang, F. Zhang, J. Leng, S. Pei, L. Wang, X. Jia, C. Cotton, B. Sun, and T.W. Chou, Microstructural Design for Enhanced Shape Memory Behavior of 4D Printed Composites Based on Carbon Nanotube/Polylactic Acid Filament, Compos. Sci. Technol., 2019, 181, p 107692. https://doi.org/10.1016/j.compscitech.2019.107692

    Article  CAS  Google Scholar 

  4. Y. Liao, C. Liu, B. Coppola, G. Barra, L. Di Maio, L. Incarnato, and K. Lafdi, Effect of Porosity and Crystallinity on 3D Printed PLA Properties, Polymers (Basel), 2019, 11(9), p 1–14.

    Article  Google Scholar 

  5. R. Baptista, M. Guedes, M.F.C. Pereira, A. Maurício, H. Carrelo, and T. Cidade, On the Effect of Design and Fabrication Parameters on Mechanical Performance of 3D Printed PLA Scaffolds, Bioprinting, 2020, 20, p e00096. https://doi.org/10.1016/j.bprint.2020.e00096

    Article  Google Scholar 

  6. R. Aziz, M.I. Ul Haq, and A. Raina, Effect of Surface Texturing on Friction Behaviour of 3D Printed Polylactic Acid (PLA), Polym. Test., 2020, 85, p 106434. https://doi.org/10.1016/j.polymertesting.2020.106434

    Article  CAS  Google Scholar 

  7. N. Naveed, Investigate the Effects of Process Parameters on Material Properties and Microstructural Changes of 3D-Printed Specimens Using Fused Deposition Modelling (FDM), Mater. Technol., 2021, 36(5), p 317–330. https://doi.org/10.1080/10667857.2020.1758475

    Article  CAS  Google Scholar 

  8. K. Wang, H. Long, Y. Chen, M. Baniassadi, Y. Rao, and Y. Peng, Heat-Treatment Effects on Dimensional Stability and Mechanical Properties of 3D Printed Continuous Carbon Fiber-Reinforced Composites, Compos. Part A Appl. Sci. Manuf., 2021, 147, p 106460. https://doi.org/10.1016/j.compositesa.2021.106460

    Article  CAS  Google Scholar 

  9. S. Guessasma, S. Belhabib, and H. Nouri, Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature, Polymers (Basel), 2019, 11(11), p 1778.

    Article  CAS  PubMed  Google Scholar 

  10. X. Zhou, J. Deng, C. Fang, W. Lei, Y. Song, Z. Zhang, Z. Huang, and Y. Li, Additive Manufacturing of CNTs/PLA Composites and the Correlation between Microstructure and Functional Properties, J. Mater. Sci. Technol., 2021, 60, p 27–34. https://doi.org/10.1016/j.jmst.2020.04.038

    Article  CAS  Google Scholar 

  11. T. Batakliev, V. Georgiev, C. Kalupgian, P.A.R. Muñoz, H. Ribeiro, G.J.M. Fechine, R.J.E. Andrade, E. Ivanov, and R. Kotsilkova, Physico-Chemical Characterization of PLA-Based Composites Holding Carbon Nanofillers, Appl. Compos. Mater., 2021, 28(4), p 1175–1192. https://doi.org/10.1007/s10443-021-09911-0

    Article  CAS  Google Scholar 

  12. W. Yu, X. Wang, E. Ferraris, and J. Zhang, Melt Crystallization of PLA/Talc in Fused Filament Fabrication, Mater. Des., 2019, 182, p 108013. https://doi.org/10.1016/j.matdes.2019.108013

    Article  CAS  Google Scholar 

  13. V. Mochalova, A. Utkin, V. Sosikov, V. Yakushev, and A. Zhukov, Shock Wave Response of Porous Carbon Fiber-Epoxy Composite, Shock Waves, 2022, 32(8), p 715–725. https://doi.org/10.1007/s00193-022-01104-3

    Article  Google Scholar 

  14. A. Sivakumar, S.S.J. Dhas, L. Dai, V. Mowlika, P. Sivaprakash, R.S. Kumar, A.I. Almansour, S. Arumugam, I. Kim, and S.A.M.B. Dhas, X-Ray Diffraction and Optical Spectroscopic Analysis on the Crystallographic Phase Stability of Shock Wave Loaded L-Valine, J. Mater. Sci., 2023, 58(22), p 9210–9220. https://doi.org/10.1007/s10853-023-08588-z

    Article  CAS  Google Scholar 

  15. A. Sivakumar, S. Kalaiarasi, S. Sahaya Jude Dhas, P. Sivaprakash, S. Arumugam, M. Jose, and S.A. Martin Britto Dhas, Comparative Assessment of Crystallographic Phase Stability of Anatase and Rutile TiO2 at Dynamic Shock Wave Loaded Conditions, J. Inorg. Organomet. Polym. Mater., 2022, 32(3), p 967–972.

    Article  CAS  Google Scholar 

  16. M.M. Dharmaraj, B.C. Chakraborty, and S. Begum, The Effect of Graphene and Nanoclay on Properties of Nitrile Rubber/Polyvinyl Chloride Blend with a Potential Approach in Shock and Vibration Damping Applications, Iran, Polym. J. English Ed., 2022, 31(9), p 1129–1145. https://doi.org/10.1007/s13726-022-01064-6

    Article  CAS  Google Scholar 

  17. A.D. Resnyansky, S.A. Weckert, and T.E. Dalby, Influence of Strength and Thermo-Mechanical Properties of Solid Constituents on Temperature of Two Shock Loaded Porous Materials, J. Dyn. Behav. Mater., 2020, 6(1), p 1–13. https://doi.org/10.1007/s40870-019-00222-x

    Article  Google Scholar 

  18. R.C. Huber, E.B. Watkins, J.L. Jordan, D.M. Dattelbaum, E.N. Brown, B.D. Bartram, and L.L. Gibson, Capturing Polymer Chain Compression and Shock Driven Decomposition of Polytetrafluoroethylene During Dynamic Shock Compression with In Situ X-Ray Diffraction, J. Dyn. Behav. Mater., 2023 https://doi.org/10.1007/s40870-023-00391-w

    Article  Google Scholar 

  19. K. Arunprasath, M. Vijayakumar, M. Ramarao, T.G. Arul, S.P. Pauldoss, M. Selwin, B. Radhakrishnan, and V. Manikandan, Dynamic Mechanical Analysis Performance of Pure 3D Printed Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS), Mater. Today Proc., 2021, 50, p 1559–1562. https://doi.org/10.1016/j.matpr.2021.09.113

    Article  CAS  Google Scholar 

  20. B. Suresha, V.V. Giraddi, A. Anand, and H.M. Somashekar, Dynamic Mechanical Analysis of 3D Printed Carbon Fiber Reinforced Polylactic Acid Composites, Mater. Today Proc., 2022, 59, p 794–799. https://doi.org/10.1016/j.matpr.2022.01.035

    Article  CAS  Google Scholar 

  21. M.A. Goorabi and M. Heuzey, Titre: Recycling of Fibreglass Wind Turbine Blades Into Reinforced PLA, 2021.

  22. G.S. Sivagnanamani, S.R. Begum, R. Siva, and M.S. Kumar, Experimental Investigation on Influence of Waste Egg Shell Particles on Polylactic Acid Matrix for Additive Manufacturing Application, J. Mater. Eng. Perform., 2022, 31(5), p 3471–3480. https://doi.org/10.1007/s11665-021-06464-y

    Article  CAS  Google Scholar 

  23. K.R. Kumar, V. Mohanavel, and K. Kiran, Mechanical Properties and Characterization of Polylactic Acid/Carbon Fiber Composite Fabricated by Fused Deposition Modeling, J. Mater. Eng. Perform., 2022, 31(6), p 4877–4886. https://doi.org/10.1007/s11665-021-06566-7

    Article  CAS  Google Scholar 

  24. A.A. Ansari and M. Kamil, Performance Study of 3D Printed Continuous Fiber-Reinforced Polymer Composites Using Taguchi Method, J. Mater. Eng. Perform., 2023, 32(21), p 9892–9906. https://doi.org/10.1007/s11665-022-07715-2

    Article  CAS  Google Scholar 

  25. A. Shrivastava, J.S. Chohan, and R. Kumar, On Mechanical, Morphological, and Fracture Properties of Sustainable Composite Structure Prepared by Materials Extrusion-Based 3D Printing, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08593-y

    Article  Google Scholar 

  26. E. Rezvani Ghomi, F. Khosravi, A. SaediArdahaei, Y. Dai, R.E. Neisiany, F. Foroughi, M. Wu, O. Das, and S. Ramakrishna, The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material, Polymers (Basel), 2021, 13(11), p 1–16.

    Article  Google Scholar 

  27. S.W. Ahmed, G. Hussain, K. Altaf, S. Ali, M. Alkahtani, M.H. Abidi, and A. Alzabidi, On the Effects of Process Parameters and Optimization of Interlaminate Bond Strength in 3D Printed ABS / CF-PLA Composite, Polymers (Basel), 2020, 12, p 2155.

    Article  CAS  PubMed  Google Scholar 

  28. H. Hasdiansah, R.I. Yaqin, P. Pristiansyah, M.L. Umar, and B.H. Priyambodo, FDM-3D Printing Parameter Optimization Using Taguchi Approach on Surface Roughness of Thermoplastic Polyurethane Parts, Int. J. Interact. Des. Manuf., 2023, 17(6), p 3011–3024. https://doi.org/10.1007/s12008-023-01304-w

    Article  Google Scholar 

  29. M.M. Tünçay, An Investigation of 3D Printing Parameters on Tensile Strength of PLA Using Response Surface Method, J. Mater. Eng. Perform., 2023, (Ref 23).

  30. G. Sakthi Balan and S. Aravind Raj, A Review on Shock Tubes with Multitudinous Applications, Int. J. Impact Eng, 2023, 172, p 104406. https://doi.org/10.1016/j.ijimpeng.2022.104406

    Article  Google Scholar 

  31. A. Sivakumar, S. Balachandar, and S.A.M.B. Dhas, Measurement of “ Shock Wave Parameters ” in a Novel Table-Top Shock Tube Using Microphones, Human Factors and Mechanical Engineering for Defense and Safety, 2020, 5, p 4–9.

  32. A. Rita, A. Sivakumar, and S.A. Martin Britto Dhas, Influence of Shock Waves on Structural and Morphological Properties of Copper Oxide NPs for Aerospace Applications, J. Nanostructure Chem., 2019, 9(3), p 225–230. https://doi.org/10.1007/s40097-019-00313-0

    Article  CAS  Google Scholar 

  33. K.P.J. Reddy and N. Sharath, Manually Operated Piston-Driven Shock Tube, Curr. Sci., 2013, 104(2), p 172–176.

    Google Scholar 

  34. R.C. Huber, E.B. Watkins, D.M. Dattelbaum, B.D. Bartram, L.L. Gibson, and R.L. Gustavsen, In Situ X-Ray Diffraction of High Density Polyethylene during Dynamic Drive: Polymer Chain Compression and Decomposition, J. Appl. Phys., 2021, 130(17).

  35. A. Sivakumar, L. Dai, S.S.J. Dhas, S.A.M.B. Dhas, V. Mowlika, R.S. Kumar, and A.I. Almansour, Reduction of Amorphous Carbon Clusters from the Highly Disordered and Reduced Graphene Oxide NPs by Acoustical Shock Waves — Towards the Formation of Highly Ordered Graphene, Diam. Relat. Mater., 2023, 137, p 110139. https://doi.org/10.1016/j.diamond.2023.110139

    Article  CAS  Google Scholar 

  36. A. Sivakumar, P. Eniya, S.S.J. Dhas, L. Dai, R.S. Kumar, A.I. Almansour, A. Sakthisabarimoorthi, J.K. Sundar, and S.A.M.B. Dhas, Assessment of Shock Wave Assisted Crystallographic Structural Stability of Poly-Crystalline and Single Crystalline Lithium Sulfate Monohydrate Crystals, J. Mol. Struct., 2023, 1288, p 135699. https://doi.org/10.1016/j.molstruc.2023.135699

    Article  CAS  Google Scholar 

  37. A. Sivakumar, S.S.J. Dhas, A.I. Almansour, R.S. Kumar, N. Arumugam, K. Perumal, and S.A.M.B. Dhas, Sustainability of the Crystallographic Phase Stability of the Barium Carbonate Nanoparticles at Dynamic Shocked Conditions, Appl. Phys. A Mater. Sci. Process., 2021, 127(12), p 1–7. https://doi.org/10.1007/s00339-021-05059-7

    Article  CAS  Google Scholar 

  38. A. Sivakumar, S. Sahaya Jude Dhas, J. Elberin Mary Theras, M. Jose, P. Sivaprakash, S. Arumugam, and S.A. Martin Britto Dhas, Spectroscopic and Diffraction Studies of Polycrystalline Copper Sulfate Pentahydrate at Shocked Conditions, Solid State Sci., 2021, 121, p 106751. https://doi.org/10.1016/j.solidstatesciences.2021.106751

    Article  CAS  Google Scholar 

  39. A. Sivakumar, S.S. Jude Dhas, S. Chakraborty, R.S. Kumar, A.I. Almansour, N. Arumugam, and S.A.M.B. Dhas, Dynamic Shock Wave-Induced Amorphous-to-Crystalline Switchable Phase Transition of Lithium Sulfate, J. Phys. Chem. C, 2022, 126(6), p 3194–3201.

    Article  CAS  Google Scholar 

  40. A. Sivakumar, A. Rita, S. Sahaya Jude Dhas, K.P.J. Reddy, R.S. Kumar, A.I. Almansour, S. Chakraborty, K. Moovendaran, J. Sridhar, and S.A. Martin Britto Dhas, Dynamic Shock Wave Driven Simultaneous Crystallographic and Molecular Switching between α-Fe2O3 and Fe3O4 Nanoparticles: A New Finding, Dalt. Trans., 2022, 51(23), p 9159–9166.

    Article  CAS  Google Scholar 

  41. A. Sivakumar, S.S.J. Dhas, A.I. Almansour, R.S. Kumar, N. Arumugam, and S.A.M.B. Dhas, Spectroscopic Assessment of Shock Wave Resistance on ZnO Nanorods for Aerospace Applications, J. Inorg. Organomet. Polym. Mater., 2021, 31(6), p 2553–2559. https://doi.org/10.1007/s10904-020-01848-4

    Article  CAS  Google Scholar 

  42. A. Sivakumar, P. Eniya, S.S.J. Dhas, R.S. Kumar, A.I. Almansour, S. Chakraborty, and J.K. Sundar, Comparative Analysis of Crystallographic Phase Stability of Single and Poly-Crystalline Lead Nitrate at Dynamic Shocked Conditions, 2022, p 1–18.

  43. A. Sivakumar, S.S.J. Dhas, L. Dai, J. Thirupathy, K. Sethuraman, R.S. Kumar, A.I. Almansour, N. Vijayan, and S.A.M.B. Dhas, Dynamic Shock Wave-Induced Switchable Order to Disorder States of Single Crystal of Sulfamic Acid: A Combined Study of X-Ray and Raman Spectroscopy, J. Mater. Sci., 2023, 58(20), p 8415–8425. https://doi.org/10.1007/s10853-023-08532-1

    Article  CAS  Google Scholar 

  44. B. Ma, X. Wang, Y. He, Z. Dong, X. Zhang, X. Chen, and T. Liu, Effect of Poly(Lactic Acid) Crystallization on Its Mechanical and Heat Resistance Performances, Polymer (Guildf), Elsevier Ltd, 2020, 2021(212), p 1–9.

    Google Scholar 

  45. C. Zhou, H. Li, W. Zhang, J. Li, S. Huang, Y. Meng, J. De Claville Christiansen, D. Yu, Z. Wu, and S. Jiang, Thermal Strain-Induced Cold Crystallization of Amorphous Poly(Lactic Acid), CrystEngComm, 2016, 18(18), p 3237–3246.

    Article  CAS  Google Scholar 

  46. A. Sivakumar, L. Dai, S.J. Dhas, R.S. Kumar, A.I. Almansour, and S.B. Dhas, Tuning of Lower to Higher Crystalline Nature of β-L-Glutamic Acid by Shock Waves, J. Mol. Struct., 2023, 1288, p 135788. https://doi.org/10.1016/j.molstruc.2023.135788

    Article  CAS  Google Scholar 

  47. A. Sivakumar, S.S. Jude Dhas, T. Pazhanivel, A.I. Almansour, R.S. Kumar, N. Arumugam, C.J. Raj, and S.A.M.B. Dhas, Phase Transformation of Amorphous to Crystalline of Multiwall Carbon Nanotubes by Shock Waves, Cryst. Growth Des., 2021, 21(3), p 1617–1624.

    Article  CAS  Google Scholar 

  48. A. Sivakumar, A. Saranraj, S.S.J. Dhas, T. Vasanthi, V.N. Vijayakumar, P. Sivaprakash, V. Pushpanathan, S. Arumugam, L. Dai and, S.A.M.B. Dhas, Shock Wave Recovery Experiments on Poly-Crystalline Tri-Glycine Sulfate: X- Ray and Raman Analyses, J. Mol. Struct., 2023, 1283, p 135262. https://doi.org/10.1016/j.molstruc.2023.135262

    Article  CAS  Google Scholar 

  49. D.M. Dattelbaum, J.D. Coe, P.A. Rigg, R.J. Scharff, and J.T. Gammel, Shockwave Response of Two Carbon Fiber-Polymer Composites to 50 GPa, J. Appl. Phys., 2014 https://doi.org/10.1063/1.4898313

    Article  Google Scholar 

  50. A. Dhiman, N.S. Lewis, A. Olokun, D.D. Dlott, and V. Tomar, Thermo-Mechanical Behavior Measurement of Polymer-Bonded Sugar under Shock Compression Using in-Situ Time-Resolved Raman Spectroscopy, Sci. Rep., 2022, 12(1), p 1–9. https://doi.org/10.1038/s41598-022-05834-3

    Article  CAS  Google Scholar 

  51. P. ASTM International, West Conshohocken, ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, 2014, https://doi.org/10.1520/D0638-14.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aravind Raj.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthi Balan, G., Aravind Raj, S. Sustainability of Existing Phase of Extruded Fiber-Reinforced Polylactic Acid under Dynamic Shock Loading Conditions. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09472-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09472-w

Keywords

Navigation