Skip to main content

Advertisement

Log in

Adsorption of uremic toxins by modified activated carbon of different mesh with sulfuric acid

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

End-stage renal disease is a global health issue, and there is a growing trend of younger individuals being affected by this condition. In order to save time for patient undergoing dialysis treatment and allow them to return to social life, a portable dialysis device called wearable artificial kidney is quite necessary. The dialysate recycling system serves as a fundamental component of the wearable artificial kidney. It effectively eliminates various toxins from the waste dialysate and gets regenerated dialysate for subsequent dialysis sessions. However, the low capacity of urea treatment has been a difficult problem to overcome. In this study, our primary focus was to investigate the optimal modification conditions for activated carbon modified with sulfuric acid. We fabricated water vapor activation of coconut shell activated carbon and modified activated carbon of various mesh sizes with sulfuric acid solution. The samples were subjected to characterization, and adsorption experiments were conducted to evaluate their performance in adsorbing creatinine and urea. It was ultimately concluded that the samples obtained by treating 200 mesh activated carbon with 6 mol/L sulfuric acid solution exhibited superior adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data will be available at the e-mail address 220210387@seu.edn.cn.

References

  1. Barsoum, R.S.: Overview: End-stage renal disease in the developing world. Artif. Organs 26(9), 737–746 (2002). https://doi.org/10.1046/j.1525-1594.2002.07061.x

  2. Bikbov, B.: Purcell: Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395(10225), 709–733 (2020). https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  3. Agaba, E.I., Lopez, A., Ma, I., Martinez, R., Tzamaloukas, R.A., Vanderjagt, D.J., Glew, R.H., Tzamaloukas, A.H.: Chronic hemodialysis in a Nigerian teaching hospital: Practice and costs. Int. J. Artif. Organs. 26(11), 991–995 (2003). https://doi.org/10.1177/039139880302601104

    Article  CAS  PubMed  Google Scholar 

  4. Hossain, M.P., Goyder, E.C., Rigby, J.E., El Nahas, M.: CKD and Poverty: A Growing Global Challenge. Am. J. Kidney Dis. 53(1), 166–174 (2009). https://doi.org/10.1053/j.ajkd.2007.10.047

    Article  PubMed  Google Scholar 

  5. Amini, M., Aghighi, M., Masoudkabir, F., Zamyadi, M., Norouzi, S., Rajolani, H., Rasouli, M.R., Pourbakhtyaran, E.: Hemodialysis Adequacy and Treatment in Iranian Patients A National Multicenter Study. Iran. J. Kidney. Dis. 5(2), 103–109 (2011)

    PubMed  Google Scholar 

  6. Himmelfarb, J., Ikizler, T.A.: Hemodialysis. N. Engl. J. Med. 363(19), 1833–1845 (2010). https://doi.org/10.1056/NEJMra0902710

    Article  CAS  PubMed  Google Scholar 

  7. Xu, J., Peng, H.Y., Feng, Z.P., Ma, Y.: Influence of blood perfusion combined with hemodialysis on calcium and phosphorus metabolism,skin pruritus symptoms,and infections in patients undergoing maintenance hemodialysis. Chin. J. Nosocomiology 25, 1808–1810 (2015) https://doi.org/10.11816/cn.ni.2015-150215

  8. Chaudhry, R.I., Golper, T.A.: Automated cyclers used in peritoneal dialysis: technical aspects for the clinician. Medical devices (Auckland, N.Z.) 8, 95–102 (2015) https://doi.org/10.2147/mder.S51189

  9. Gokal, R., Mallick, N.P.: Peritoneal dialysis. Lancet 353(9155), 823–828 (1999). https://doi.org/10.1016/s0140-6736(98)09410-0

    Article  CAS  PubMed  Google Scholar 

  10. Gura, V., Macy, A.S., Beizai, M., Ezon, C., Golper, T.A.: Technical Breakthroughs in the Wearable Artificial Kidney (WAK). Clin. J. Am. Soc. Nephrol. 4(9), 1441–1448 (2009). https://doi.org/10.2215/cjn.02790409

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo, H., Tang, W.: Research progress in new peritoneal dialysis fluid. Chin. J. Blood Purificat. 19(6), 403 (2020)

    Google Scholar 

  12. Jorres, A., Topley, N., Witowski, J., Liberek, T., Gahl, G.M.: Impact of peritoneal dialysis solutions on peritoneal immune defense. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 13 Suppl 2, S291–4

  13. Hamada, C., Honda, K., Kawanishi, K., Nakamoto, H., Ito, Y., Sakurada, T., Tanno, Y., Mizumasa, T., Miyazaki, M., Moriishi, M., Nakayama, M.: Morphological characteristics in peritoneum in patients with neutral peritoneal dialysis solution. J. Artif. Organs 18(30), 243–250 (2015). https://doi.org/10.1007/s10047-015-0822-4

  14. Blumenkrantz, M.J., Gordon, A., Roberts, M., Lewin, A.J., Pecker, E.A., Moran, J.K., Coburn, J.W., Maxwell, M.H.: Applications of the Redy sorbent system to hemodialysis and peritoneal-dialysis. Artif. Organs 3(3), 230–236 (1979)

    Article  CAS  PubMed  Google Scholar 

  15. Lameire, N.H., De Vriese, A.S.: In: Ronco, C. and Winchester, J. F.(eds.) Adsorption techniques and the use of sorbents. Contributions to Nephrology, vol. 133, pp. 140–153 (2001)

  16. Mion, C., Branger, B., Issautier, R., Ellis, H.A., Rodier, M., Shaldon, S.: Dialysis fracturing osteomalacia without hyperparathyroidism in patients treated with HCO3 rinsed Redy cartridge. Trans Am Soc Artif Intern Organs 27, 634–638 (1981)

    CAS  PubMed  Google Scholar 

  17. Jing, S.B., Yamaguchi, T.: Selective chemisorption of urea by chitosan coated dialdehyde cellulose. Nippon Kagaku Kaishi 1, 104–108 (1990). https://doi.org/10.1246/nikkashi.1990.104

    Article  Google Scholar 

  18. Pathak, A., Bajpai, S. K.: Preparation of Cu(II)-Immobilized chitosan (CIC) and preliminary urea uptake study. Polym.-Plast. Technol Eng 47(9), 925–930 (2008) https://doi.org/10.1080/03602550802269779

  19. Reyes-Rodriguez, P.Y., Avila-Orta, C.A., Andrade-Guel, M., Cortes-Hernandez, D.A., Herrera-Guerrero, A., Cabello-Alvarado, C., Sanchez-Fuentes, J., Ramos-Martinez, V.H., Valdez-Garza, J.A., Hurtado-Lopez, G.F.: Synthesis and characterization of magnetic nanoparticles Zn1-xMgxFe2O4 with partial substitution of Mg2+ (x=0.0, 0.25, 0.5, 0.75 and 1.0) for adsorption of uremic toxins. Ceram. Int. 46(18), 27913–27921 (2020) https://doi.org/10.1016/j.ceramint.2020.08.019

  20. Meng, F.Y., Seredych, M., Chen, C., Gura, V., Mikhalovsky, S., Sandeman, S., Ingavle, G., Ozulumba, T., Miao, L., Anasori, B., Gogotsi, Y.: MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney. Acs Nano. 12(10), 10518–10528 (2018). https://doi.org/10.1021/acsnano.8b06494

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, Y.C., Fu, C.C., Hsiao, Y.S., Chien, C.C., Juang, R.S.: Clearance of low molecular-weight uremic toxins p-cresol, creatinine, and urea from simulated serum by adsorption. J. Mol. Liq. 252, 203–210 (2018). https://doi.org/10.1016/j.molliq.2017.12.084

    Article  CAS  Google Scholar 

  22. Pastor-Villegas, J., Duran-Valle, C.J.: Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon 40(3), 397–402 (2002). https://doi.org/10.1016/s0008-6223(01)00118-x

    Article  CAS  Google Scholar 

  23. Yang, S.S., Li, H.C., Liu, X.H.: Effect of sulfuric acid-modified activated carbons on the adsorption of Li+. Appl. Chem. Ind. 46(6), 10518–10528 (2017) https://doi.org/10.16581/j.cnki.issn1671-3206.20170505.040

  24. Prahas, D., Kartika, Y., Indraswati, N., Ismadji, S.: Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem. Eng. J. 140(1–3), 32–42 (2008). https://doi.org/10.1016/j.cej.2007.08.032

    Article  CAS  Google Scholar 

  25. Li, L., Liu, S.Q., Liu, J.X.: Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J. Hazard. Mater. 192(2), 683–690 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.069

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y., Zhuang, S.: Characteristics of \(PO_{4~(3-)}\) adsorption on sulphuric acid modified bamboo biochar. Environ. Pollut. Control 42(10), 1216 (2020)

    Google Scholar 

  27. Child, R.: Coconut shells as an industrial raw material; coconut shell charcoal; activated carbon. Curr. Sci. 16(1), 5–8 (1947)

    CAS  PubMed  Google Scholar 

  28. Liang, Z.P., Feng, Y.Q., Liang, Z.Y., Meng, S.X.: Adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose under biocatalysis of immobilized urease: Equilibrium and kinetic. Biochem. Eng. J. 24(1), 65–72 (2005). https://doi.org/10.1016/j.bej.2005.02.005

  29. Li, L.: Method for two-step enzyme assaying of creatinine in blood serum, involves hydrolyzing creatinine to generate creatine and calculating content of creatinine using second reagent comprising creatinine amido hydrolytic enzyme and preservative. LI L (LILL-Individual) (2001)<Go to ISI>://DIIDW:2011G19102

  30. Giraldo, L., Vargas, D.P., Moreno-Pirajan, J.C.: Study of CO2 Adsorption on Chemically Modified Activated Carbon With Nitric Acid and Ammonium Aqueous. Front. Chem. 8 (2020) https://doi.org/10.3389/fchem.2020.543452

  31. Morawski, A.W., Inagaki, M.: Application of modified synthetic carbon for adsorption of trihalomethanes (THMs) from water. Desalination 114(1), 23–27 (1997). https://doi.org/10.1016/s0011-9164(97)00150-1

    Article  CAS  Google Scholar 

  32. Pereira, M.F.R., Soares, S.F., Orfao, J.J.M., Figueiredo, J.L.: Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41(4), 811–821 (2003). https://doi.org/10.1016/s0008-6223(02)00406-2

    Article  CAS  Google Scholar 

  33. Yan, C., Yi, W., Ma, P., Deng, X., Song, S., Zhu, Z.: Synthesis and Characterization of Hydrous Ceria with Its Adsorption Property for Boron. J. Chin. Rare Earth Soc. 26(3), 302–306 (2008)

    CAS  Google Scholar 

  34. Kameda, T., Horikoshi, K., Kumagai, S., Saito, Y., Yoshioka, T.: Adsorption of urea, creatinine, and uric acid onto spherical activated carbon. Sep. Purif. Technol. 237, 116367 (2020). https://doi.org/10.1016/j.seppur.2019.116367

    Article  CAS  Google Scholar 

  35. Cao, Y., Gu, Y., Wang, K., Wang, X., Gu, Z., Ambrico, T., Castro, M.A., Lee, J., Gibbons, W., Rice, J.A.: Adsorption of creatinine on active carbons with nitric acid hydrothermal modification. J. Taiwan Inst. Chem. Eng. 66, 347–356 (2016). https://doi.org/10.1016/j.jtice.2016.06.008

    Article  CAS  Google Scholar 

  36. Ye, C., Gong, Q.M., Lu, F.P., Liang, J.: Adsorption of uraemic toxins on carbon nanotubes. Sep. Purif. Technol. 58(1), 2–6 (2007). https://doi.org/10.1016/j.seppur.2007.07.003

    Article  CAS  Google Scholar 

  37. Koubaissy, B., Toufaily, J., Yaseen, Z., Daou, T.J., Jradi, S., Hamieh, T.: Adsorption of uremic toxins over dealuminated zeolites. Adsorp. Sci. Technol. 35(1–2), 3–19 (2017). https://doi.org/10.1177/0263617416666084

    Article  CAS  Google Scholar 

  38. Bergé-Lefranc, D., Pizzala, H., Denoyel, R., Hornebecq, V., Bergé-Lefranc, J.L., Guieu, R., Brunet, P., Ghobarkar, H., Schäf, O.: Mechanism of creatinine adsorption from physiological solutions onto mordenite. Microporous Mesoporous Mater. 119(1), 186–192 (2009). https://doi.org/10.1016/j.micromeso.2008.10.016

    Article  CAS  Google Scholar 

  39. Zhao, Q., Seredych, M., Precetti, E., Shuck, C.E., Harhay, M., Pang, R., Shan, C.X., Gogotsi, Y.: Adsorption of Uremic Toxins Using Ti3C2Tx MXene for Dialysate Regeneration. ACS Nano. 14(9), 11787–11798 (2020). https://doi.org/10.1021/acsnano.0c04546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dymek, K., Kurowski, G., Kuterasinski, L., Szumera, M., Sitarz, M., Pajdak, A., Boguszewska-Czubara, A., Jodlowski, P.J.: In Search of Effective UiO-66 Metal-Organic Frameworks for Artificial Kidney Application. ACS Appl. Mater. Interfaces. 13(38), 45149–45160 (2021). https://doi.org/10.1021/acsami.1c05972

  41. Liu, Y., Li, G., Han, Q., Lin, H., Li, Q., Deng, G., Liu, F.: Cu (II)-phenolic complex incorporated hemodialysis membranes for efficient urea removal via enhanced adsorption strategy. J. Membr. Sci. 695, 122480 (2024). https://doi.org/10.1016/j.memsci.2024.122480

    Article  CAS  Google Scholar 

  42. Abidin, M.N.Z., Goh, P.S., Ismail, A.F., Said, N., Othman, M.H.D., Hasbullah, H.: Highly adsorptive oxidized starch nanoparticles for efficient urea removal. Carbohydr. Polym. 201, 257–263 (2018). https://doi.org/10.1016/j.carbpol.2018.08.069

    Article  CAS  PubMed  Google Scholar 

  43. Beletskiy, E., Shen, Z.L., Riofski, M., Hou, X.L., Gallagher, J., Miller, J., Wu, Y.Y., Kung, M., Kung, H.: Tetrahedral Sn-silsesquioxane: Synthesis, characterization, and adsorption properties. Abstr. Pap. Am. Chem. Soc. 249 (2015)

Download references

Acknowledgements

We would like to thank Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments for providing experimental materials and equipment.

Funding

The authors thank the financial supports from the National Natural Science Foundation of China (No. 52075099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sha Jingjie.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of Interest

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qin Guangle and Zhang Gan contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 66 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guangle, Q., Gan, Z., Dapeng, C. et al. Adsorption of uremic toxins by modified activated carbon of different mesh with sulfuric acid. Adsorption (2024). https://doi.org/10.1007/s10450-024-00462-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00462-x

Keywords

Navigation