Skip to main content
Log in

Characterization of Bacterial Isolates from Tailings Pond and Their Resistance to Heavy Metals and Antibiotics

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

lWater samples were collected from a tailings pond wastewater site in the Rudnik mountain area, where polymetallic ore flotation processes generate high concentrations of Pb2+, Zn2+, and Cu2+. The study aimed to identify microorganisms resistant to heavy metals and assess their potential for bioremediation. Growth capabilities under varying conditions, including temperature, pH, and NaCl concentrations, were analyzed using a spectrophotometer. Minimal inhibitory and lethal concentrations of tested substances were determined for both planktonic cells and their biofilms. Key isolates, namely Bacillus altitudinis PMFKG-R3, B. pumilus PMFKG-R15, B. cereus PMFKG-R46, Pseudomonas veronii PMFKG-R30, and Pantoea agglomerans PMFKG-R20, demonstrated growth ability at both 22 and 37°C and exhibited halotolerance, albeit sensitivity to acidic pH. Most isolates in both planktonic and biofilm forms displayed notable resistance to heavy metals, particularly Pb2+ and Zn2+, in line with the sampling location. Notably, planktonic cells were sensitive to antibiotics, while biofilms exhibited slightly higher resistance. Promising candidates for bioremediation purposes were identified in P. veronii PMFKG-R30 and P. agglomerans PMFKG-R20, which displayed resistance to heavy metals and sensitivity to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bacterial Stress Responses, Storz, G. and Hengge-Aronis R., Eds., Washington, D.C.: ASM Press, 2000, pp. 161–178.

  2. Kang, C.H., Kwon, Y.J., and So, J.S., Ecol. Eng., 2016, vol. 89, pp. 64–69. https://doi.org/10.1016/j.ecoleng.2016.01.023

    Article  Google Scholar 

  3. Igiri, B.E., Okoduwa, S.I.R., Idoko, G.O., Akabuogu, E.P., Adeyi A.O., and Ejiogu, I.K., J. Toxicol., 2018, vol. 2018, p. 2568038. https://doi.org/10.1155/2018/2568038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rajbanshi, A., Our Nature, 2008, vol. 6, no. 1, pp. 52–57.

    Article  Google Scholar 

  5. Approaches in Bioremediation. The New Era of Environmental Microbiology and Nanobiotechnology, Prasad R. and Aranda E., Eds., Springer International Publishing, 2018, pp. 1–28. https://doi.org/springer.com/de/book/9783030023683

  6. Edwards, S.J. and Kjellerup, B.V., Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 23, pp. 9909–9921. https://doi.org/10.1007/s00253-013-5216-z

    Article  CAS  PubMed  Google Scholar 

  7. Gupta Mahendra, K., Kiran, K., Amita, S., and Shikha, G., J. Environ. Res. Dev., 2014, vol. 8, no. 4, pp. 883–889.

    Google Scholar 

  8. Narasimhulu, K., Rao, P.S., and Vinod, A.V., J. Microbial Biochem. Technol., 2010. vol. 2, no. 3, pp. 74–76.

    Article  CAS  Google Scholar 

  9. Mladenović, K.G., Muruzović, M.Ž., Žugić-Petrović, T.D., and Čomić, L.R., Kragujev. J. Sci., 2018, vol. 40, pp. 205–216. https://doi.org/10.5937/KgJSci1840205M

    Article  Google Scholar 

  10. Grujić, S., Vasić, S., Čomić, L., Ostojić, A., and Radojević, I., Water Sci. Technol., 2017, vol. 76, no. 4, pp. 806–812. https://doi.org/10.2166/wst.2017.248

    Article  CAS  PubMed  Google Scholar 

  11. Shylla, L., Barik, S.K., and Joshi, S.R., Arch. Microbiol., 2021, vol. 203, no. 5, pp. 2379–2392. https://doi.org/10.1007/s00203-021-02218-5

    Article  CAS  PubMed  Google Scholar 

  12. Branković, S., Bugarčić, M., Bugarčić, F.Ž., Ostojić, A., Petronijević J., Rosić, G., et al., Environ. Sci. Pollut. Res., 2022, vol. 29, no. 3, pp. 1–13. https://doi.org/10.1007/s11356-022-19986-2

    Article  CAS  Google Scholar 

  13. Methods for General and Molecular Microbiology, Reddy, C.A., Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., and Snyder, L.R. Eds., Wiley Online Library, 2007, 3rd ed. https://doi.org/10. 1128/9781555817497

  14. O'Toole, G.A. and Kolter, R., Mol. Microbiol., 1998, vol. 28, no. 3, pp. 449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x

    Article  CAS  PubMed  Google Scholar 

  15. Muruzović, M.Ž., Mladenović, K.G., Stefanović, O.D., Vasić, S.M., and Čomić, L.R., J. Food Drug Anal., 2016, vol. 24, no. 3, pp. 539–547. https://doi.org/10.1016/j.jfda.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrews, J.M., J. Antimicrob. Chemother., 2005. vol. 56, pp. 60–76.

    Article  CAS  PubMed  Google Scholar 

  17. Sarker, S.D, Nahar, L., and Kumarasamy, Y., Methods, 2007, vol. 42, no. 4, pp. 321–324. https://doi.org/10.1016/j.ymeth.2007.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Padan, E., Bibi, E., Ito, M., and Krulwich, T.A., Biochim. Biophys. Acta Biomembr., 2005, vol. 1717, no. 2, pp. 67–88. https://doi.org/10.1016/j.bbamem.2005.09.010

    Article  CAS  Google Scholar 

  19. Hahne, H., Mäder, U., Otto, A., Bonn, F., Steil, L., Bremer, E., et al., J. Bacteriol., 2010. vol. 192, no. 3, pp. 870–882. https://doi.org/10.1128/jb.01106-09

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, G.P., Mir, Ahmed, S.K.M.H., Desai, S., Amalraj, E.L.D., and Rasul, A., Int. J. Bacteriol., 2014, vol. 2014, p. 195946. https://doi.org/10.1155/2014/195946

    Article  Google Scholar 

  21. Han, L.J., Li, J.S., Xue, Q., and Wang, M.Q., Earth Environ. Sci., 2021, vol. 861, no. 7, p. 072020. https://doi.org/10.1088/1755-1315/861/7/072020

    Article  Google Scholar 

  22. Hong, Z., Rong, X., Cai, P., Liang, W., and Huang Q., Geomicrobiol. J., 2011, vol. 28, no. 8, pp. 686–691. https://doi.org/10.1080/01490451.2010.514025

    Article  CAS  Google Scholar 

  23. Sharma, D., Misba, L., and Khan, A.U., Antimicrob. Resist. Infect. Control, 2019, vol. 8, no. 1, pp. 1–10. https://doi.org/10.1186/s13756-019-0533-3

    Article  Google Scholar 

  24. Ikhwani, A.Z.N., Nurlaila, H.S., Ferdinand, F.D.K., Fachria, R., Hasan A.E.Z., Yani M., et al., Earth Environ. Sci., 2017. vol. 58, no. 1, p. 012056. https://doi.org/10.1088/1755-1315/58/1/012056

    Article  Google Scholar 

  25. Ashwitha, K., Rangeshwaran, R., Vajid, N.V., Sivakumar, G., Jalali, S.K., Rajalaksmi, K., et al., J. Biol. Control, 2013, vol. 27, no. 4, pp. 319–328.

    Google Scholar 

  26. Busnelli, M.P., Lazzarini Behrmann, I.C., Ferreira, M.L., Candal, R.J., Ramirez, S.A., and Vullo, D.L., Front. Microbiol., 2021, vol. 12, p. 622600. https://doi.org/10.3389/fmicb.2021.622600

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mèndez, N., Ramìrez, S.A.M., Cerettia, H.M., Zalts, A., Candal, R., and Vullo, D.L., Global J. Environ. Sci. Technol., 2011, vol. 1, no. 3.

  28. González, C., Daniel, J., Barrera, R., Ángel, M., Ramírez, R., Sánchez, Y.A., et al., Rev. Mexicana Cienc. Agríc., 2016, vol. 7, no. 4, pp. 961–968.

    Article  Google Scholar 

  29. Neeta, B., Maansi, V., and Harpreet, S.B., Afr. J. Microbiol. Res., 2016, vol. 10, no. 5, pp. 127–137. https://doi.org/10.5897/AJMR2015.7769

    Article  CAS  Google Scholar 

  30. AbdAlhussen, L.S. and Darweesh M.F., Int. J. Chemtech. Res., 2016, vol. 9, no. 8, pp. 430–437.

    CAS  Google Scholar 

  31. Zou, H.Y., He, L.Y., Gao, F.Z., Zhang, M., Chen, S., Wu, D.L., et al., Sci. Total Environ., 2021, vol. 772, p. 145516. https://doi.org/10.1016/j.scitotenv.2021.145516

    Article  CAS  PubMed  Google Scholar 

  32. Timoney, J.F., Port, J., Giles, J., and Spanier, J., Appl. Environ. Microbiol., 1978, vol. 36, no. 3, pp. 465–472. https://doi.org/10.1128/aem.36.3.465-472.1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shammi, T. and Ahmed, S., Bangladesh J. Microbiol., 2013. vol. 30, nos. 1–2, pp. 17–22. https://doi.org/10.3329/bjm.v30i1-2.28448

    Article  Google Scholar 

  34. Choudhury, P. and Kumar, R., Ind. J. Med. Res., 1996, vol. 104, pp. 148–151.

    CAS  Google Scholar 

  35. Teixeira, P., Tacão, M., Alves, A., and Henriques, I., Mar. Pollut. Bull., 2016, vol. 110, no. 1, pp. 75–81. https://doi.org/. 2016.06.086https://doi.org/10.1016/j.marpolbul

Download references

Funding

This work was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement no. 451-03-68/2022-14/200122), Multilateral scientific and technological cooperation in the Danube region for 2020-2022. year (DS10) 337-00-00322/2019-09/107 Metal microorganism’s interaction as a basis for progressive biotechnological processes and COST Action 18113 (STSM grant ECOSTSTSM-Request-CA18113-45768) EuroMicropH—Understanding and exploiting the impacts of low pH on micro-organisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Ćirković.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

10438_2024_8712_MOESM1_ESM.pdf

Fig. S1 . MALDI-TOF MS spectra of isolate B. altitudinis PMFKG-R3; the absolute intensities of the ions are shown on the y axis, and the masses (m/z) of the ions are shown on the x-axis.

Fig. S2 . MALDI-TOF MS spectra of isolate B. pumilus PMFKG-R15; the absolute intensities of the ions are shown on the y axis, and the masses (m/z) of the ions are shown on the x-axis.

Fig. S3 . MALDI-TOF MS spectra of isolate B. cereus PMFKG-R46; the absolute intensities of the ions are shown on the y axis, and the masses (m/z) of the ions are shown on the x-axis.

Fig. S4 . MALDI-TOF MS spectra of isolate P. veronii PMFKG-R30; the absolute intensities of the ions are shown on the y axis, and the masses (m/z) of the ions are shown on the x-axis.

Fig. S5 . MALDI-TOF MS spectra of isolate P. agglomerans PMFKG-R20; the absolute intensities of the ions are shown on the y axis, and the masses (m/z) of the ions are shown on the x-axis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radojević, I.D., Ćirković, K.G., Grujović, M.Ž. et al. Characterization of Bacterial Isolates from Tailings Pond and Their Resistance to Heavy Metals and Antibiotics. Appl Biochem Microbiol 60, 347–357 (2024). https://doi.org/10.1134/S0003683824020157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824020157

Keywords:

Navigation