Skip to main content
Log in

Advantages and Limitations of the Biofilm Study Methods

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A community of microorganisms adhered to a solid surface and entrapped in a self-produced extracellular polymeric matrix, in general is referred to as a ‘biofilm’. Biofilm formation is a phenomenon naturally exhibited by the majority of microorganisms, (except a few like Pelagibacter and some planktonic bacteria). The trait of biofilm formation by the microorganisms allows them to survive in harsh environments, important for their existence and sustenance. To form biofilms, microorganisms possess a supportive genetic makeup, which enables them to function and grow in a coordinated manner. Surprisingly at present, there is a lack of proper consensus regarding the utilization of technique and methodologies available in the precise analysis, growth and characterization of biofilms. The current review aims to bridge this gap by presenting a detailed review of the available study methods and tools the most promising in the detection, growth and characterization of biofilms. The selection of the most appropriate biofilm study and analysis method in a given situation is of utmost importance in order to understand the formation and prospective fruitful utilization of biofilms by humankind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Barbu, S., Morf, M., and Barbu, A.E., Nanoscale Technol. Biol. Syst., 2004, vol. 1, pp. 143–173. https://doi.org/10.1201/9780203500224

    Article  Google Scholar 

  2. Körstgens, V., Flemming, H.C., Wingender, J., and Borchard, W., J. Microbiol. Methods, 2001, vol. 46, no. 1, pp. 9–17. https://doi.org/10.1016/S0167-7012(01)00248-2

    Article  PubMed  Google Scholar 

  3. Costerton, J.W., Geesey, G.G., and Cheng, K.J., Sci. Am., 1978, vol. 238, pp. 86–95. https://doi.org/10.1038/scientificamerican0178-86

    Article  CAS  PubMed  Google Scholar 

  4. Oliveira, F., Lima, C.A., Brás, S., França, Â., and Cerca, N., FEMS Microbiol. Lett., 2015, vol. 362, no. 20, p. fnv175. https://doi.org/10.1093/femsle/fnv175

  5. Wilson, C., Lukowicz, R., Merchant, S., Valquier-Flynn, H., Caballero, J., Sandoval, J., et al., Res. Rev. J. Eng. Technol., 2017, vol. 6, no. 4.

  6. Fletcher, M., Can. J. Microbiol., 1977, vol. 23, no. 1, pp. 1–6. https://doi.org/10.1139/m77-001

    Article  Google Scholar 

  7. Djordjevic, D., Wiedmann, M., and McLandsborough, L.A., Appl. Environ. Microbiol., 2002, vol. 68, no. 6, pp. 2950–2958. https://doi.org/10.1128/AEM.68.6.2950-2958.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gabrilska, R.A. and Rumbaugh, K.P., Future Microbiol., 2015, vol. 10, no. 12, pp. 1997–2015. https://doi.org/10.2217/fmb.15.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stevens, K.A. and Jaykus, L.A., Crit. Rev. Microbiol., 2004, vol. 30, no. 1, pp. 7–24. https://doi.org/10.1080/10408410490266410

    Article  PubMed  Google Scholar 

  10. Huang, Y., Chakraborty, S., and Liang, H., Anal. Methods, 2020, vol. 12, no. 4, pp. 416–432. https://doi.org/10.1039/c9ay02214g

    Article  CAS  Google Scholar 

  11. Roy, R., Tiwari, M., Donelli, G., and Tiwari, V., Virulence, 2018, vol. 9, no. 1, pp. 522–554. https://doi.org/10.1080/21505594.2017.1313372

    Article  CAS  PubMed  Google Scholar 

  12. Boudet, A., Sorlin, P., Pouget, C., Chiron, R., Lavigne, J.-P., Dunyach-Remy, C., et al., Front. Microbiol., 2021, vol. 12, p. 750489. https://doi.org/10.3389/fmicb.2021.750489

    Article  PubMed  PubMed Central  Google Scholar 

  13. Funari, R. and Shen, A.Q., ACS Sens., 2022, vol. 7, no. 2, pp. 347–357. https://doi.org/10.1021/acssensors.1c02722

    Article  CAS  PubMed  Google Scholar 

  14. Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., et al., Crit. Rev. Microbiol., 2017, vol. 43, no. 3, pp. 313–351. https://doi.org/10.1080/1040841X.2016.1208146

    Article  CAS  PubMed  Google Scholar 

  15. Pandey, R.P., Mukherjee, R., and Chang, C.M., J. Antibiot., 2022, vol. 11, no. 4, p. 476. https://doi.org/10.3390/antibiotics11040476

    Article  CAS  Google Scholar 

  16. Olsen, I. and Hajishengallis, G.J., J. Oral Microbiol., 2016, vol. 8, no. 1, p. 30936.https://doi.org/10.3402/jom.v8.30936

  17. Elias, S. and Banin, E., FEMS Microbiol. Rev., 2012, vol. 36, no. 5, pp. 990–1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x

    Article  CAS  PubMed  Google Scholar 

  18. Azeredo, J., Crit. Rev. Microbiol., 2017, vol. 43, no. 3, pp. 313–351. https://doi.org/10.1080/1040841X.2016.1208146

    Article  CAS  PubMed  Google Scholar 

  19. Pineda, J., Auria, R., Perez-Guevara, F., and Revah, S., Bioprocess Eng., 2000, vol. 23, no. 5, pp. 479–486. https://doi.org/10.1007/s004499900181

    Article  CAS  Google Scholar 

  20. Hao, Y., Xiong, X., Wu, C., Xia, Y., Li, J., Wu, Y., et al., Sci. Total Environ., 2018, vols. 613–614, pp. 1430–1437. https://doi.org/10.1016/j.scitotenv.2017.06.117

    Article  CAS  Google Scholar 

  21. Li, L., Mendis, N., Trigui, H., Oliver, J.D., and Faucher, S.P., Front. Microbiol., 2014, vol. 5, p. 258. https://doi.org/10.3389/fmicb.2014.00258

  22. Browne, D.J., Kelly, A.M., Brady, J.L., and Doolan, D.L., Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.962220

  23. Carini, P., Marsden, P.J., Leff, J.W., Morgan, E E., Strickland, M.S., Fierer, N., et al., Nat. Microbiol., 2016, vol. 2, p. 16242. https://doi.org/10.1038/nmicrobiol.2016.242

  24. Golpayegani, A., Douraghi, M., Rezaei, F., Alimohammadi, M., and Nodehi, R. N., Environ. Health Sci. Eng., 2019, vol. 17, no. 1, pp. 407–416. https://doi.org/10.1007/s40201-019-00359-w

    Article  CAS  Google Scholar 

  25. Lv, X.C., Li, Y., Qiu, W.W., Wu, X.Q., Xu, B.-X., Liang, Y.-T., et al., Food Control, 2016, vol. 66, pp. 69–78. https://doi.org/10.1016/j.foodcont.2016.01.040

    Article  CAS  Google Scholar 

  26. Deshmukh, R.A., Joshi, K., Bhand, S., and Roy, U., MicrobiologyOpen, 2016, vol. 5, no. 6, pp. 901–922. https://doi.org/10.1002/mbo3.383

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xochitl, D.B., Sevda, S., Vanbroekhoven, K., and Pant, D., Chem. Soc. Rev., 2012, vol. 41, no. 21, pp. 7228–7246. https://doi.org/10.1039/c2cs35026b

    Article  CAS  Google Scholar 

  28. Hong, S.D., Dhong, H.J., Chung, S.K., Kim, H.Y., Park, J.O., Ha, S. ., et al ., Clin. Exp. Otorhinolaryngol., 2014, vol. 7, no. 3, pp. 193–197. https://doi.org/10.3342/ceo.2014.7.3.193

    Article  PubMed  PubMed Central  Google Scholar 

  29. De Carvalho, C.C.C.R. and Da Fonseca, M.M.R., BioTechniques, 2007, vol. 42, no. 5, pp. 616–620. https://doi.org/10.2144/000112403

    Article  CAS  PubMed  Google Scholar 

  30. Abu Bakar, M., McKimm, J., Haque, S.Z., Majumder, M.A.A., and Haque, M., J. Inflamm. Res., 2014, vol. 18, no. 23, pp. 3720–3725.

    Google Scholar 

  31. Richardson, N., Mordan, N.J., Figueiredo, J.A.P., Ng, Y.L., and Gulabivala, K., Int. Endod. J., 2009, vol. 42, no. 10, pp. 908–921. https://doi.org/10.1111/j.1365-2591.2009.01594.x

    Article  CAS  PubMed  Google Scholar 

  32. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jørgensen, A., Molin, S., and Tolker-Nielsen, T., Mol. Microbiol., 2003, vol. 48, no. 6, pp. 1511–1524. https://doi.org/10.1046/j.1365-2958.2003.03525.x

    Article  CAS  PubMed  Google Scholar 

  33. Bridier, A., Dubois-Brissonnet, F., Boubetra, A., Thomas, V., and Briandet, R., J. Microbiol. Methods, 2010, vol. 82, no. 1, pp. 64–70. https://doi.org/10.1016/j.mimet.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  34. Guilbaud, M., Piveteau, P., Desvaux, M., Brisse, S., and Briandet, R., Appl. Environ. Microbiol., 2015, vol. 81, no. 5, pp. 1813–1819. https://doi.org/10.1128/AEM.03173-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, L., Liao, K., and Wang, D., PLoS One, 2015, vol. 10, no. 2, p. 117695. https://doi.org/10.1371/journal.pone.0117695

    Article  CAS  Google Scholar 

  36. Thornton, R.B., Rigby, P.J., Wiertsema, S.P., Filion, P., Langlands, J., Coates, H.L., Vijayasekaran, S., Keil, A.D., Richmond, P.C., et al., BMC Pediatr., 2011, vol. 11, p. 94. https://doi.org/10.1186/1471-2431-11-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bridier, A., Briandet, R., Bouchez, T., and Jabot, F., Biofouling., 2014, vol. 30, no. 7, pp. 761–771. https://doi.org/10.1080/08927014.2014.923409

    Article  PubMed  Google Scholar 

  38. Doroshenko, N., Tseng, B.S., Howlin, R.P., Deacon, J., Wharton, J.A., Thurner, P.J., et al., J. Antimicrob. Agents, 2014, vol. 58, no. 12, pp. 7273–7282. https://doi.org/10.1128/AAC.03132-14

    Article  CAS  Google Scholar 

  39. Dufrêne, Y.F. and Persat, A., Nat. Rev. Microbiol., 2020, vol. 18, no. 4, pp. 227–240. https://doi.org/10.1038/s41579-019-0314-2

    Article  CAS  PubMed  Google Scholar 

  40. Lim, J., Cui, Y., Oh, Y.J., Park, J.R., Jo, W., Cho, Y.-H., et al., J. Nanosci. Nanotechnol., 2011, vol. 11, no. 7, pp. 5676–5681. https://doi.org/10.1166/jnn.2011.4491

    Article  CAS  PubMed  Google Scholar 

  41. Perozo, E., Kloda, A., Cortes, D.M., and Martinac, B., J. Nanosci. Nanotechnol., 2002, vol. 9, no. 9, pp. 696–703. https://doi.org/10.1038/nsb827

    Article  CAS  Google Scholar 

  42. Beaussart, A., El-Kirat-Chatel, S., Sullan, R.M.A., Alsteens, D., Herman, P., Derclaye, S., et al., Nat. Protoc., 2014, vol. 9, no. 5, pp. 1049–1055. https://doi.org/10.1038/nprot.2014.066

    Article  CAS  PubMed  Google Scholar 

  43. Zeng, G., Müller, T., and Meyer, R.L., Langmuir., 2014, vol. 30, no. 14, pp. 4019–4025. https://doi.org/10.1021/la404673q

    Article  CAS  PubMed  Google Scholar 

  44. Tarafdar, A., Lee, J.-U., Jeong, J.-E., Lee, H., Jung, Y., Oh, H. B., et al., J. Hazard. Mater., 2021, vol. 409, p. 124516. https://doi.org/10.1016/j.jhazmat.2020.124516

    Article  CAS  PubMed  Google Scholar 

  45. Boyd, C.D., Smith, T.J., El-Kirat-Chatel, S., Newell, P.D., Dufrêne, Y.F., O’Toole, G.A., et al., J. Bacteriol., 2014, vol. 196, no. 15, pp. 2775–2788. https://doi.org/10.1128/JB.01629-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nandakumar, K., Obika, H., Utsumi, A., Ooie, T., and Yano, T., Biotechnol. Bioeng., 2004, vol. 86, no. 7, pp. 729–736. https://doi.org/10.1002/bit.10829

    Article  CAS  PubMed  Google Scholar 

  47. Qin, Z., Zhang, J., Hu, Y., Chi, Q., Mortensen, N.P., Qu, D., et al., Ultramicroscopy, 2009, vol. 109, no. 8, pp. 881–888. https://doi.org/10.1016/j.ultramic.2009.03.040

    Article  CAS  PubMed  Google Scholar 

  48. Ceresa, C., Tessarolo, F., Caola, I., Nollo, G., Cavallo, M., Rinaldi, M., et al., J. Appl. Microbiol., 2015, vol. 118, no. 5, pp. 1116–1125. https://doi.org/10.1111/jam.12760

    Article  CAS  PubMed  Google Scholar 

  49. Garcez, A.S., Núnez, S.C., Azambuja Jr. N., Fregnani, E.R., Rodriguez, H.M. H., Hamblin, M.R., et al., Photomed. Laser Surg., 2013, vol. 31, no. 11, pp. 519–525. https://doi.org/10.1089/pho.2012.3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nishitani, K., Sutipornpalangkul, W., de Mesy Bentley, K.L., Varrone, J.J., Bello-Irizarry, S.N., Ito, H., et al., J. Orthop. Res., 2015, vol. 33, no. 9, pp. 1311–1319. https://doi.org/10.1002/jor.22907

  51. Alhede, M., Qvortrup, K., Liebrechts, R., Høiby, N., Givskov, M., Bjarnsholt, T., et al., FEMS Microbiol. Immunol., 2012, vol. 65, no. 2, pp. 335–342. https://doi.org/10.1111/j.1574-695X.2012.00956.x

    Article  CAS  Google Scholar 

  52. Timp, W. and Matsudaira, P., Methods Cell Biol., 2008, vol. 89, pp. 391–407. https://doi.org/10.1016/S0091-679X(08)00614-6

    Article  PubMed  Google Scholar 

  53. Bleck, C.K.E., J. Microsc., 2010, vol. 237, no. 1, pp. 23–38. https://doi.org/10.1111/j.1365-2818.2009.03299.x

    Article  CAS  PubMed  Google Scholar 

  54. Karcz, J., Bernas, T., Nowak, A., Talik, E., and Woznica, A., Scanning Microsc., 2012, vol. 34, no. 1, pp. 26–36. https://doi.org/10.1002/sca.20275

    Article  CAS  Google Scholar 

  55. Hrubanova, K., Nebesarova, J., Ruzicka, F., and Krzyzanek, V., Micron, 2018, vol. 110, pp. 28–35. https://doi.org/10.1016/j.micron.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Ferrante, T.C., Terry, R., et al., Nat. Protoc., 2015, vol. 10, no. 3, pp. 442–458. https://doi.org/10.1038/nprot.2014.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goeres, D.M., Hamilton, M.A., Beck, N.A., Buckingham-Meyer, K., Hilyard, J.D., Loetterle, L.R., et al., Nat. Protoc., 2009, vol. 4, no. 5, pp. 783–788. https://doi.org/10.1038/nprot.2009.59

    Article  CAS  PubMed  Google Scholar 

  58. Sabaeifard, P., Abdi-Ali, A., Soudi, M.R., and Dinarvand, R., J. Microbiol., 2014, vol. 105, pp. 134–140. https://doi.org/10.1016/j.mimet.2014.07.024

    Article  CAS  Google Scholar 

  59. Bossù, M., Selan, L., Artini, M., Relucenti, M., Familiari, G., Papa, R., et al., Microorganisms, 2020, vol. 8, no. 6, p. 807. https://doi.org/10.3390/microorganisms8060807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Villacorte, L.O., Ekowati, Y., Neu, T R., Kleijn, J.M., Winters, H., Amy, G., et al., Water Res., 2015, vol. 73, pp. 216–230. https://doi.org/10.1016/j.watres.2015.01.028

    Article  CAS  PubMed  Google Scholar 

  61. Wang, J., Ren, H., Li, X., Li, J., Ding, L., Geng, J., et al., Chem. Eng. J., 2018, vol. 334, pp. 2134–2141. https://doi.org/10.1016/j.cej.2017.11.043

    Article  CAS  Google Scholar 

  62. Koo, H. and Yamada, K.M., Curr. Opin. Cell Biol., 2016, vol. 42, pp. 102–112. https://doi.org/10.1016/j.ceb.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bowen, W.H., Burne, R.A., Wu, H., and Koo, H., Trends Microbiol., 2018, vol. 26, pp. 229–242. https://doi.org/10.1016/j.tim.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  64. Coenye, T. and Vandamme, P., FEMS Microbiol Lett., 2003, vol. 228, pp. 45–49. https://doi.org/10.1016/S0378-1097(03)00717-1

    Article  CAS  PubMed  Google Scholar 

  65. Wenning, M. and Scherer, S., Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 7111–7120. https://doi.org/10.1007/s00253-013-5087-3

    Article  CAS  PubMed  Google Scholar 

  66. Novais, Â., Freitas, A.R., Rodrigues, C., and Peixe, L., Eur. J. Clin. Microbiol., 2019, vol. 38, pp. 427–448. https://doi.org/10.1007/s10096-018-3431-3

    Article  Google Scholar 

  67. Singhal, N., Kumar, M., Kanaujia, P.K., and Virdi, J.S., Front. Microbiol., 2015, vol. 6, p. 79.https://doi.org/10.3389/fmicb.2015.00791

    Article  Google Scholar 

  68. Silva, N.B.S., Marques, L.A., and Röder, D.D.B., J. Appl. Microbiol., 2021, vol. 6, pp. 2148–2160. https://doi.org/10.1111/jam.15049

    Article  Google Scholar 

  69. Mlynáriková, K., Šedo, O., Růžička, F., Zdráhal, Z., Holá, V., Mahelová, M.,et al., Folia Microbiol., 2016, vol. 61, no. 6, pp. 465–471. https://doi.org/10.1007/s12223-016-0458-7

    Article  CAS  Google Scholar 

  70. Crivello, G., Fracchia, L., Ciardelli, G., Boffito, M., and Mattu, C., Nanomaterials, 2023, vol. 13, no. 5, p. 904. https://doi.org/10.3390/nano13050904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reiferth, V.M., Holtmann, D., and Müller, D., Eng. Life Sci., 2022, vol. 22, no. 12, pp. 796–802. https://doi.org/10.1002/elsc.202100076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kulišová, M., Maťátková, O., Brányik, T., Zelenka, J., Drábová, L., and Kolouchová, I., J. Microbiol. Methods, 2023, vol. 205, p. 106676. https://doi.org/10.1016/j.mimet.2023.106676

  73. Gomes, L.C., Teixeira-Santos, R., Romeu, M.J., and Mergulhão, F., Urinary Stents, 2022, vol. 31, pp. 225–243.

    Article  Google Scholar 

  74. Luo, T.L., Vanek, M.E., Gonzalez-Cabezas, C., Marrs, C.F., Foxman, B., Rickard, A.H., et al., J. Appl. Microbiol., 2022, vol. 132, no. 2, pp. 855–871. https://doi.org/10.1111/jam.15200

    Article  PubMed  Google Scholar 

  75. Prado, M.M., Figueiredo, N., Pimenta, A.L., Miranda, T.S., Feres, M., Figueiredo, L C., et al., J. Periodont. Res., 2022, vol. 1373, pp. 159–174. https://doi.org/10.1007/978-3-030-96881-6_8

    Article  CAS  Google Scholar 

  76. Sousa, V., Mardas, N., Spratt, D., Hassan, I. A., Walters, N. J., Beltrán, V., et al., Int. J. Mol. Sci., 2022, vol. 23, no. 17, p. 10033. https://doi.org/10.3390/ijms231710033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kazemi, K., Ghahramani, Y., and Yari, M., J. Nanobiotechnology, 2022, vol. 3, no. 2, pp. 8–15.

    CAS  Google Scholar 

  78. Sportelli, M.C., Kranz, C., Mizaikoff, B., and Cioffi, N., Anal. Chim. Acta, 2022, vol. 1195, p. 339433. https://doi.org/10.1016/j.aca.2022.339433

    Article  CAS  PubMed  Google Scholar 

  79. Sun, X.L., Xiang, H., Xiong, H.Q., Fang, Y.C., and Wang, Y., Sci. Total Environ., 2023, vol. 863, p. 160953. https://doi.org/10.1016/j.scitotenv.2022.160953

    Article  CAS  PubMed  Google Scholar 

  80. Hassanzadeh, R., Sabzi, R.E., and Faraji, M., J. Electroanal. Chem., 2022, vol. 924, p. 116821. https://doi.org/10.1016/j.jelechem.2022.116821

    Article  CAS  Google Scholar 

  81. Dong, D., Liu, Q., Wang, X., Hu, H., Wu, B., Ren, H., et al., Chemosphere, 2022, vol. 303, p. 135091. https://doi.org/10.1016/j.chemosphere.2022.135019

    Article  CAS  Google Scholar 

  82. Mehta, N., J. Nat. Sci., 2022, vol. 6, no. 10, pp. 1–6. https://doi.org/10.26685/urncst.403

    Article  Google Scholar 

  83. Rey, M.D.L.A., Rodriguez Racca, A., Ribeiro, L.R., Dos Santos Cruz, F., Cap, M., Mozgovoj, M.V., et al., J. Food Sci., 2022, vol. 87, no. 6, pp. 2324–2336. https://doi.org/10.1111/1750-3841.16179

    Article  CAS  PubMed  Google Scholar 

  84. Kim, U., Lee, S.Y., and Oh, S.W., Food Sci. Biotechnol., 2023, pp. 1–13. https://doi.org/10.1007/s10068-023-01317-x

  85. Rodrigues, C.F., Allkja, J., Mendes, L. and Azevedo, A.S., Multispecies Biofilms, 2022, vol. 19. pp. 35–78. https://doi.org/10.1007/978-3-031-15349-5_2

    Article  CAS  Google Scholar 

  86. Mart’yanov, S.V., Gannesen, A.V., and Plakunov, V.K., Coatings, 2022, vol. 12, no. 12, p. 1923. https://doi.org/10.3390/coatings12121923

  87. House, K.L., Pan, L., O’Carroll, D.M., and Xu, S., Eur. J. Oral Sci., 2022, vol. 130, no. 2, p. e12853. https://doi.org/10.1111/eos.12853

  88. Fundamentals and Application of Atomic Force Microscopfor Food Research, Zhong, J., Gaiani, C., and Hongshun, Y., Eds., Elsevier, 2022, pp. 161–187. https://doi.org/10.1016/B978-0-12-823985-8.00007-4

  89. Zhang, Y., Lin, S., Fu, J., Zhang, W., Shu, G., Lin, J., et al., J. Appl. Microbiol., 2022, vol. 133, no. 3, pp. 1273–1287. https://doi.org/10.1111/jam.15640

    Article  CAS  PubMed  Google Scholar 

  90. Hrdlickova, R., Toloue, M., and Tian, B., Wiley Interdiscip. Rev. RNA, 2017, vol. 8, no. 1, p. 1364. https://doi.org/10.1002/wrna.1364

    Article  CAS  Google Scholar 

  91. Nersisyan, S., Shkurnikov, M., Poloznikov, A., Turchinovich, A., Burwinkel, B., Anisimov, N., et al., Int. J. Mol. Sci., 2020, vol. 21, no. 4, p. 1228. https://doi.org/10.3390/ijms21041228

  92. Zollinger, D.R., Lingle, S.E., Sorg, K., Beechem, J.M., and Merritt, C.R., Methods Mol. Biol., 2020, vol. 2148, pp. 331–345. https://doi.org/10.1007/978-1-0716-0623-0_21

    Article  CAS  PubMed  Google Scholar 

  93. Jefcoate, C.R. and Lee, J., J. Mol. Endocrinol., 2018, vol. 60, no. 4, pp. R213–R235. https://doi.org/10.1530/JME-17-0281

  94. Wang, G., Moffitt, J.R., and Zhuang, X., Sci. Rep., 2018, vol. 8, no. 1, p. 4847. https://doi.org/10.1038/s41598-018-22297-7

  95. Stickels, R.R., Murray, E., Kumar, P., Li, J., Marshall, J.L., Di Bella, D.J., et al., Nat. Biotechnol., 2021, vol. 39, no. 3, pp. 313–319. https://doi.org/10.1038/s41587-020-0739-1

  96. Otto, A., Bernhardt, J., Hecker, M., and Becher, D., Curr. Opin. Microbiol., 2012, vol. 15, no. 3, pp. 364–372. https://doi.org/10.1016/j.mib.2012.02.005

  97. Wong, J.W.H. and Cagney, G., Methods Mol. Biol., 2010, vol. 604, pp. 273–283. https://doi.org/10.1007/978-1-60761-444-9_18

    Article  CAS  PubMed  Google Scholar 

  98. Qiu, D., Wilson, M.S., Eisenbeis, V.B., Harmel, R.K., Riemer, E., Haas, T.M., et al., Nat. Commun., 2020, vol. 11, no. 1, p. 6035. https://doi.org/10.1038/s41467-020-19928-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Finnin, M.S., Donigian, J.R., Cohen, A., Richon, V.M., Rifkind, R.A., Marks, P.A., et al., 1999, Nature, vol. 401, p. 6749. https://doi.org/10.1038/43710

    Article  CAS  Google Scholar 

  100. Ram, S. and Powell, E., J. Immunother. Cancer, 2021, vol. 9, p. A61. https://doi.org/10.1136/jitc-2021-sitc2021.054

    Article  Google Scholar 

  101. Black, S., Phillips, D., Hickey, J.W., Kennedy-Darling, J., Venkataraaman, V.G., Samusik, N., et al., Nat. Protoc., 2021, vol. 16, no. 8, pp. 3802–3835. https://doi.org/10.1038/s41596-021-00556-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gut, G., Herrmann, M.D., and Pelkmans, L., Science, 2018, vol. 361, p. 6401. https://doi.org/10.1126/science.aar7042

    Article  CAS  Google Scholar 

  103. Chang, Q., Ornatsky, O.I., Siddiqui, I., Loboda, A., Baranov, V.I., Hedley, D.W., et al., Cytometry, 2017, vol. 91, no. 2, pp. 160–169. https://doi.org/10.1002/cyto.a.23053

    Article  PubMed  Google Scholar 

  104. Volpi, E.V. and Bridger, J.M., Biotechniques, 2008, vol. 45, no. 4, pp. 385–409. https://doi.org/10.2144/000112811

    Article  CAS  PubMed  Google Scholar 

  105. Kubota, K., Microbes Environ., 2013, vol. 28, no. 1, pp. 3–12. https://doi.org/10.1264/jsme2.ME12107

    Article  PubMed  Google Scholar 

  106. Stoecker, K., Dorninger, C., Daims, H., and Wagner, M., Appl. Environ. Microbiol., 2010, vol. 76, no. 3, pp. 922–926. https://doi.org/10.1128/AEM.02456-09

    Article  CAS  PubMed  Google Scholar 

  107. Huang, W.E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A.S., et al., Environ. Microbiol., 2007, vol. 9, no. 8, pp. 1878–1889. https://doi.org/10.1111/j.1462-2920.2007.01352.x

    Article  CAS  PubMed  Google Scholar 

  108. Forrest, G.N., Expert Rev. Mol. Diagn., 2007, vol. 7, pp. 231–236. https://doi.org/10.1586/14737159.7.3.231

    Article  CAS  PubMed  Google Scholar 

  109. Kreth, J. and Merritt, J., FEMS Microbiol. Rev., 2023, vol. 47, no. 1, p. fuac040. https://doi.org/10.1093/femsre/fuac052

Download references

ACKNOWLEDGMENTS

This research was conducted at the Energy Engineering Research Laboratory (EERL) of Chemical Engineering Department, National Institute of Technology (NIT) Srinagar, Jammu and Kashmir, India. The authors would like to acknowledge Mr. J. Nath, Mr. F. Ahmad, Mr. A.H.  Khanday, Mr. W.A. Dhobi, and Mr. A. Khawaja (research scholars of fellow laboratories of NIT Srinagar) for their contributions in conceptualization and data correction.

Funding

The authors express their sincere gratitude to the Ministry of Education (MOE), Government of India, in providing the financial funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Mir.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, D.H., Rather, M.A. Advantages and Limitations of the Biofilm Study Methods. Appl Biochem Microbiol 60, 264–279 (2024). https://doi.org/10.1134/S000368382402011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382402011X

Keywords:

Navigation