Skip to main content
Log in

Substrate Inhibition of the Highly Efficient PET Hydrolase

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Polyethylene terephthalate (PET) is one of the most abundant polyester materials used in daily life and it is also one of the culprits of environmental pollution. ICCG (F243I/D238C/S283C/Y127G) is a quadruple mutant of leaf-branch compost cutinase (LCC) displaying outstanding performance in hydrolyzing PET and holding a great potential in further applications. Substrate concentration is one of the important factors affecting the catalytic degradation efficiency. The conventional fast equilibrium theory holds that the degradation rate reaches the maximum and tends to be stable with the increase of substrate concentration, however, in practice, too much substrate will inhibit the catalytic reaction. In this study, the substrate inhibitory effect of PET plastic particles with different particle sizes on ICCG was evaluated. Combined with kinetic constant analysis, the optimal PET particle size was determined to be 300 μm. Meanwhile, several mutants (Y95K, M166S and H218S) of ICCG were obtained by site-directed mutagenesis. The effect of substrate concentration on mutant was studied under the condition of optimal reaction particle size. This study provides a strategy for obtaining high-efficiency PET degradation mutants and a new possibility of environmentally friendly plastic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhang, K., Hamidian, A. H., Tubic, A., Zhang, Yu., Fang, J.K.H., Wu, C., et al., Environ. Pollut., 2021, vol. 274, p. 116554. https://doi.org/10.1016/j.envpol.2021.116554

    Article  CAS  PubMed  Google Scholar 

  2. Urbanek, A.K., Rymowicz, W., Mironczuk, A.M., Appl. Microbiol. Biotechnol., 2018, vol. 102, no. 18, pp. 7669–7877. https://doi.org/10.1007/s00253-018-9195-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakamura, S., Environ. Sci. Technol., 2020, vol. 54, pp. 14862–14867. https://doi.org/10.1021/acs.est.0c06015

    Article  CAS  PubMed  Google Scholar 

  4. Austin, H.P., Allen, M.D., Donohoe, B.S., Rorrer, N. A., Kearns, F.L., Silveira, R. L., et al., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 19, pp. 4350–4357. https://doi.org/10.1073/pnas.1718804115

    Article  CAS  Google Scholar 

  5. George, N. and Kurian T., Ind. Eng. Chem. Res., 2014, vol. 134, no. 15, pp. 1167–1177. https://doi.org/10.1021/ie501995m

    Article  CAS  Google Scholar 

  6. Mohammadian, M., Allen, N.S., Edge, M., and Jones, K., Text. Res. J., 1991, vol. 175, no. 33, pp. 119–127. https://doi.org/10.1177/004051759106101109

    Article  Google Scholar 

  7. Daniel, P. and Tadeusz, S., Resour. Conserv. Recycl., 1997, vol. 257, p. 432. https://doi.org/10.1016/j.resconrec.2022.106854

    Article  CAS  Google Scholar 

  8. Liu, L., Xu, M., Ye, Y., and Zhang, B., Sci. Total Environ., 2021, vol. 15, no. 23, pp. 2274–2281. https://doi.org/10.1016/j.scitotenv.2021.151312

    Article  CAS  Google Scholar 

  9. Singh, J. J., Bansal, S., Sonthalia, A., Rai, A.K., and Singh, S.P., Bioresour. Technol., 2022, vol. 335, no. 27, pp. 1126–1139. https://doi.org/10.1016/j.biortech.2022.126697

    Article  CAS  Google Scholar 

  10. Wei, R., Tiso, T., Bertling, J., O’Connor, K., Blank, L.M., and Bornscheuer, U.T., Nat. Catal., 2020, vol. 447, pp. 2279–2288. https://doi.org/10.1038/s41929-020-00521-w

    Article  CAS  Google Scholar 

  11. Shirke, A.N., White, C., Englaender, J.A., Zwarycz, A., Butterfoss, G.L., Linhardt, R.J., et al., Biochemistry, 2018, vol. 129, pp. 7432–7437. https://doi.org/10.1021/acs.biochem.7b01189

    Article  CAS  Google Scholar 

  12. Ribitsch, D., Hromic, A., Zitzenbacher, S., Zartl, B., Gamerith, C., Pellis, A., et al., Biotechnol. Bioeng., 2017, vol. 39, no. 47, pp. 749–758. https://doi.org/10.1002/bit.26372

    Article  CAS  Google Scholar 

  13. Čorak, I., Tarbuk, A., Đorđević, D., Višić, K., and Botteri, L, Materials, 2022, vol. 64, no. 27, pp. 2556–2559. https://doi.org/10.3390/ma15041530

    Article  CAS  Google Scholar 

  14. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al., Science, 2016, vol. 189, no. 13, pp. 177–179. https://doi.org/10.1126/science.aad6359

    Article  CAS  Google Scholar 

  15. Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., et al., Nature, 2020, vol. 580, no. 7802, pp. 216–219. https://doi.org/10.1038/s41586-020-2149-4

    Article  CAS  PubMed  Google Scholar 

  16. Mariñas-Collado, I., Rivas-López, M.J., Rodríguez-Díaz, J.M., and Santos-Martín, M.T., Chemom. Intell. Lab. Syst., 2019, vol. 189, pp. 102–109. https://doi.org/10.1016/j.chemolab.2019.04.005

    Article  CAS  Google Scholar 

  17. Khrenova., M.G., Polyakov., I.V., and Nemukhin A.V., Russ. J. Phys. Chem. B., 2022, vol. 188, no. 19, pp. 127–132. https://doi.org/10.1134/s1990793122030174

  18. Han, X., Liu, W., Huang, J.-W., Ma, J., Zheng, Y., Ko, T-P., et al., Nat. Commun., 2017, vol. 226, pp. 507–511. https://doi.org/10.1038/s41467-017-02255-z

    Article  CAS  Google Scholar 

  19. Miles, S.A., Science, 1951, vol. 13, pp. 155–159. https://doi.org/10.1126/science.114.2969.554-a

    Article  Google Scholar 

  20. Walters, D.E., J. Med. Chem., 2002, vol. 17, no. 33, pp. 751–755. https://doi.org/10.1021/jm020467f

    Article  CAS  Google Scholar 

  21. Kaiser, P.M., J. Mol. Catal., 1980, vol. 8, no 4, pp. 431–442. https://doi.org/10.1016/0304-5102(80)80082-4

    Article  CAS  Google Scholar 

  22. Gente, V., La Marca, F., Lucci, F., Massacci, P., and Pani, E., Waste Manage., 2004, vol. 11, no. 3, pp. 451–454. https://doi.org/10.1016/j.wasman.2004.03.005

    Article  CAS  Google Scholar 

  23. Yang, K., Sun, W., Li, Q., Wang, J., Yao, J., and Wang, X., Anal. Sci., 2022, vol. 226, p. 7443. https://doi.org/10.1007/s44211-022-00091-w

    Article  CAS  Google Scholar 

  24. Barth, M., Oeser, T., Wei, R., Then, J., Schmidt, J., and Zimmermann, W., Biochem. Eng. J., 2015, vol. 93, pp. 222–228. https://doi.org/10.1016/j.bej.2014.10.012

    Article  CAS  Google Scholar 

  25. Arnling B.J., Borch K., and Westh P., Anal. Biochem., 2020, vol. 607, p. 113873. https://doi.org/10.1016/j.ab.2020.113873

    Article  CAS  Google Scholar 

  26. Yoshino, M. and Murakami, K., SpringerPlus, 2015, vol. 4, pp. 292–294. https://doi.org/10.1186/s40064-015-1082-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kaiser, P.M., J. Mol. Catal., 1980, vol. 8, no. 3, pp. 2551–2556. https://doi.org/10.1016/0304-5102(80)80082-4

    Article  Google Scholar 

  28. Kühl, P.W., Biochem. J., 1994, vol. 1, no. 1, pp. 171–180. https://doi.org/10.1042/bj2980171

    Article  Google Scholar 

  29. Liu, Y., Liu, Z., Guo, Z., Yan, T., Jin, C., and Wu, J., Sci. Total Environ., 2022, vol. 834, p. 154947. https://doi.org/10.1016/j.scitotenv.2022.154947

    Article  CAS  PubMed  Google Scholar 

  30. Zeng, W., Li, X., Yang, Y., Min, J., Huang, J-W., and Liu, W., ACS Catal., 2022, vol. 12, no. 5, pp. 3033–3040. https://doi.org/10.1021/acscatal.1c05800

    Article  CAS  Google Scholar 

  31. Chen, C-C., Han, X., Li, X., Jiang, P., Niu, D., Ma, L., et al., Nat. Catal., 2021, vol. 4, no. 5, pp. 425–430. https://doi.org/10.1038/s41929-021-00616-y

    Article  CAS  Google Scholar 

  32. Joo, S., Cho, I.J., Seo, H., Son, H.F., Sagong, H-Y., Shin, T.J., Choi, S.Y., et al., Nat. Commun., 2018, vol. 9, no. 1, p. 382. https://doi.org/10.1038/s41467-018-02881-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, H., Diaz, D.J., Czarnecki, N.J., Zhu, C., Kim, W., Shroff, R., et al., Nature, 2022, vol. 604, no. 7907, pp. 662–667. https://doi.org/10.1038/s41586-022-04599-z

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the National Natural Science Foundation of China (Grant no. 22273032 to J.Y.) and the Shandong Provincial Natural Science Foundation of China (Grants ZR2022MC046 to J.Y. and Grants ZR2022MB138 to X.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Wang or Jianzhuang Yao.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Jing, N., Leng, X. et al. Substrate Inhibition of the Highly Efficient PET Hydrolase. Appl Biochem Microbiol 60, 280–286 (2024). https://doi.org/10.1134/S0003683824020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824020091

Keywords:

Navigation