Skip to main content
Log in

Water Ice and Possible Habitability in the Landing Area of Tianwen-1 Mission

  • Special Communication
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Tianwen-1 mission, marking China’s inaugural venture into Mars exploration, successfully deployed the Zhurong rover on Utopia Planitia. This review primarily focuses on the insights provided by the Mars Rover Penetrating Radar (RoPeR), a pivotal component of the mission’s scientific payload. The article synthesizes the RoPeR findings with an emphasis on the geological evolution and potential habitability of the Zhurong rover landing site. The study meticulously investigates the genesis and spatial distribution of water ice within Utopia Planitia, establishing correlations with the Martian climatic and hydrological history, the formation of typical landforms and mineral evidence associated with water ice/liquid water of this region. It further discusses the potential habitability of Mars’ subsurface in the current environmental context. This review also expatiates the techniques used in the analysis of RoPeR data, including the methodology for processing polarimetric radar data and the inversion of the dielectric properties of the Martian subsurface. Through this comprehensive review, we aim to present a cohesive picture of the Tianwen-1 mission’s findings, particularly the Zhurong rover results, and their implications for understanding Mars’ geological past, water ice, and assessing its habitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Al-Nuaimy W, Huang Y, Nakhkash M, Fang M, Nguyen V, Eriksen A (2000) Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition. J Appl Geophys 43(2–4):157–165

    Article  Google Scholar 

  • Bengtson S, Belivanova V, Rasmussen B, Whitehouse M (2009) The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proc Natl Acad Sci 106(19):7729–7734

    Article  ADS  Google Scholar 

  • Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312(5772):400–404

    Article  ADS  Google Scholar 

  • Bina A, Osinski GR (2021) Decameter-scale rimmed depressions in utopia planitia: insight into the glacial and periglacial history of Mars. Planet Space Sci 204:105253

    Article  Google Scholar 

  • Blasius KR, Cutts JA, Guest JE, Masursky H (1977) Geology of the valles marineris: first analysis of imaging from the Viking 1 orbiter primary mission. J Geophys Res 82(28):4067–4091

    Article  ADS  Google Scholar 

  • Brzostowski MA, McMechan GA (1992) 3-d tomographic imaging of near-surface seismic velocity and attenuation. Geophysics 57(3):396–403

    Article  ADS  Google Scholar 

  • Buczkowski DL, Seelos KD, Cooke ML (2012) Giant polygons and circular graben in western Utopia basin, Mars: Exploring possible formation mechanisms. J Geophys Res, Planets 117(E8)

  • Campbell BA, Morgan GA (2018) Fine-scale layering of Mars polar deposits and signatures of ice content in nonpolar material from multiband sharad data processing. Geophys Res Lett 45(4):1759–1766

    Article  ADS  Google Scholar 

  • Cannon KM, Britt DT, Smith TM, Fritsche RF, Batcheldor D (2019) Mars global simulant MGS-1: a rocknest-based open standard for basaltic Martian regolith simulants. Icarus 317:470–478

    Article  ADS  Google Scholar 

  • Capineri L, Grande P, Temple J (1998) Advanced image-processing technique for real-time interpretation of ground-penetrating radar images. Int J Imaging Syst Technol 9(1):51–59

    Article  Google Scholar 

  • Carr MH (1987) Water on Mars. Nature 326(6108):30–35

    Article  ADS  Google Scholar 

  • Carr MH, Head JW III (2003) Oceans on Mars: an assessment of the observational evidence and possible fate. J Geophys Res, Planets 108(E5)

  • Carr MH, Head JW III (2010) Geologic history of Mars. Earth Planet Sci Lett 294(3–4):185–203

    Article  ADS  Google Scholar 

  • Carr MH, Head JW (2015) Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys Res Lett 42(3):726–732

    Article  ADS  Google Scholar 

  • Carr M, Head J (2019) Mars: formation and fate of a frozen Hesperian ocean. Icarus 319:433–443

    Article  ADS  Google Scholar 

  • Carrier WD III, Olhoeft GR, Mendell W (1991) Physical properties of the lunar surface. In: Lunar sourcebook, a user’s guide to the moon, pp 475–594

    Google Scholar 

  • Carter J, Poulet F, Bibring J-P, Mangold N, Murchie S (2013) Hydrous minerals on Mars as seen by the crism and omega imaging spectrometers: updated global view. J Geophys Res, Planets 118(4):831–858

    Article  ADS  Google Scholar 

  • Casademont T, Hamran S-E, Amundsen H, Eide S, Dypvik H, Berger T, Russell P (2022) Dielectric permittivity and density of the shallow Martian subsurface in jezero crater. LPI Contrib 2678:1513

    ADS  Google Scholar 

  • Chen R, Zhang L, Xu Y, Liu R, Bugiolacchi R, Zhang X, Chen L, Zeng Z, Liu C (2023) Martian soil as revealed by ground-penetrating radar at the Tianwen-1 landing site. Geology 51(3):315–319

    Article  ADS  Google Scholar 

  • Christensen PR (2006) Water at the poles and in permafrost regions of Mars. Elements 2(3):151–155

    Article  ADS  Google Scholar 

  • Ciarletti V, Clifford S, Plettemeier D, Le Gall A, Hervé Y, Dorizon S, Quantin-Nataf C, Benedix W-S, Schwenzer S, Pettinelli E (2017) The wisdom radar: unveiling the subsurface beneath the exomars rover and identifying the best locations for drilling. Astrobiology 17(6–7):565–584

    Article  ADS  Google Scholar 

  • Cloude SR, Pottier E (1996) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34(2):498–518

    Article  ADS  Google Scholar 

  • Cooper CD, Mustard JF (2002) Spectroscopy of loose and cemented sulfate-bearing soils: implications for duricrust on Mars. Icarus 158(1):42–55

    Article  ADS  Google Scholar 

  • Craddock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J Geophys Res, Planets 107(E11):21-1–21-36

    Article  Google Scholar 

  • de Pablo MA, Komatsu G (2009) Possible pingo fields in the utopia basin, Mars: geological and climatical implications. Icarus 199(1):49–74

    Article  ADS  Google Scholar 

  • Delbo S, Gamba P, Roccato D (2000) A fuzzy shell clustering approach to recognize hyperbolic signatures in subsurface radar images. IEEE Trans Geosci Remote Sens 38(3):1447–1451

    Article  ADS  Google Scholar 

  • Ding C, Xiao Z, Su Y, Zhao J, Cui J (2020) Compositional variations along the route of Chang’e-3 Yutu rover revealed by the lunar penetrating radar. Prog Earth Planet Sci 7(1):1–11

    Article  Google Scholar 

  • Ding C, Xiao Z, Su Y (2021) A potential subsurface cavity in the continuous ejecta deposits of the Ziwei crater discovered by the Chang’e-3 mission. Earth Planets Space 73:1–12

    Article  ADS  Google Scholar 

  • Ding L, Zhou R, Yu T, Gao H, Yang H, Li J, Yuan Y, Liu C, Wang J, Zhao Y-YS (2022) Surface characteristics of the Zhurong Mars rover traverse at Utopia Planitia. Nature Geoscience 15(3):171–176

    Article  ADS  Google Scholar 

  • Ding C, Su Y, Lei Z, Zhang Z, Song M, Liu Y, Wang R, Li Q, Li C, Huang S (2022) Electromagnetic signal attenuation characteristics in the lunar regolith observed by the lunar regolith penetrating radar (LRPR) onboard the Chang’e-5 lander. Remote Sens 14(20):5189

    Article  ADS  Google Scholar 

  • Dong J, Sun Z, Rao W, Jia Y, Wang C, Chen B, Chu Y (2018) Mission profile and design challenges of Mars landing exploration: 75–87

  • Dong Z, Feng X, Zhou H, Liu C, Lu Q, Liang W (2021) Assessing the effects of induced field rotation on water ice detection of Tianwen-1 full-polarimetric Mars rover penetrating radar. IEEE Trans Geosci Remote Sens 60:1–13

    Google Scholar 

  • Durham R, Schmunk R, Chamberlain J (1989) Comparative analysis of the atmospheres of early Earth and early Mars. Adv Space Res 9(6):139–142

    Article  ADS  Google Scholar 

  • Eide S, Casademont TM, Berger T, Dypvik H, Shoemaker ES, Hamran S-E (2022) Radar attenuation in the shallow Martian subsurface: RIMFAX time-frequency analysis and constant-q characterization over Jezero crater floor. Geophys Res Lett: e2022GL101429

  • Eigenbrode JL, Summons RE, Steele A, Freissinet C, Millan M, Navarro-González R, Sutter B, McAdam AC, Franz HB, Glavin DP (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360(6393):1096–1101

    Article  ADS  Google Scholar 

  • Fa W, Cai Y (2013) Circular polarization ratio characteristics of impact craters from Mini-RF observations and implications for ice detection at the polar regions of the Moon. J Geophys Res, Planets 118(8):1582–1608

    Article  ADS  Google Scholar 

  • Fan M, Lyu P, Su Y, Du K, Zhang Q, Zhang Z, Dai S, Hong T (2021) The Mars Orbiter Subsurface Investigation Radar (MOSIR) on China’s Tianwen-1 Mission. Space Sci Rev 217:1–17

    Article  ADS  Google Scholar 

  • Farmer JD, Des Marais DJ (1999) Exploring for a record of ancient Martian life. J Geophys Res, Planets 104(E11):26977–26995

    Article  Google Scholar 

  • Feldman W, Boynton W, Tokar R, Prettyman T, Gasnault O, Squyres S, Elphic R, Lawrence D, Lawson S, Maurice S (2002) Global distribution of neutrons from Mars: results from Mars Odyssey. Science 297(5578):75–78

    Article  ADS  Google Scholar 

  • Feng J, Su Y, Ding C, Xing S, Dai S, Zou Y (2017) Dielectric properties estimation of the lunar regolith at CE-3 landing site using lunar penetrating radar data. Icarus 284:424–430

    Article  ADS  Google Scholar 

  • Fisher DA, Hecht MH, Kounaves SP, Catling DC (2010) A perchlorate brine lubricated deformable bed facilitating flow of the North polar cap of Mars: Possible mechanism for water table recharging. J Geophys Res, Planets 115(E2)

  • Freeman SE, Freeman LA, Giorli G, Haas AF (2018) Photosynthesis by marine algae produces sound, contributing to the daytime soundscape on coral reefs. PLoS ONE 13(10):e0201766

    Article  Google Scholar 

  • Gallagher C, Balme M, Conway S, Grindrod PM (2011) Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows. Icarus 211(1):458–471

    Article  ADS  Google Scholar 

  • Gibson PJ (1979) The Vivaldi aerial. In: 9th European microwave conference, pp 101–105

    Google Scholar 

  • Gilichinsky D, Wagener S (1995) Microbial life in permafrost: a historical review. Permafr Periglac Process 6(3):243–250

    Article  Google Scholar 

  • Gou S, Yue Z, Di K, Zhao C, Bugiolacchi R, Xiao J, Cai Z, Jin S (2022) Transverse aeolian ridges in the landing area of the Tianwen-1 Zhurong rover on Utopia Planitia, Mars. Earth Planet Sci Lett 595:117764

    Article  Google Scholar 

  • Grima C, Kofman W, Mouginot J, Phillips RJ, Hérique A, Biccari D, Seu R, Cutigni M (2009) North polar deposits of Mars: Extreme purity of the water ice. Geophys Res Lett 36(3)

  • Grima C, Mouginot J, Kofman W, Hérique A, Beck P (2022) The basal detectability of an ice-covered Mars by marsis. Geophys Res Lett 49(2):e2021GL096518

    Article  ADS  Google Scholar 

  • Hamilton CW, Fagents SA, Wilson L (2010) Explosive lava-water interactions in Elysium Planitia, Mars: geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups. J Geophys Res, Planets 115:E09006

    Article  ADS  Google Scholar 

  • Hamran S-E, Berger T, Brovoll S, Damsgård L, Helleren Ø, Øyan MJ, Amundsen HE, Carter L, Ghent R, Kohler J (2015) RIMFAX: a GPR for the Mars 2020 rover mission. In: 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), pp 1–4

    Google Scholar 

  • Hamran S-E, Paige DA, Allwood A, Amundsen HE, Berger T, Brovoll S, Carter L, Casademont TM, Damsgård L, Dypvik H (2022) Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars. Sci Adv 8(34):eabp8564

    Article  Google Scholar 

  • Hapke B (1990) Coherent backscatter and the radar characteristics of outer planet satellites. Icarus 88(2):407–417

    Article  ADS  Google Scholar 

  • Harrison TN, Osinski GR, Tornabene LL, Jones E (2015) Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation. Icarus 252:236–254

    Article  ADS  Google Scholar 

  • Head JW III, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ (1999) Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 286(5447):2134–2137

    Article  ADS  Google Scholar 

  • Head JW, Marchant D, Agnew M, Fassett C, Kreslavsky M (2006) Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for late Amazonian obliquity-driven climate change. Earth Planet Sci Lett 241(3–4):663–671

    Article  ADS  Google Scholar 

  • Head J, Forget F, Wordsworth R, Turbet M, Cassanelli J, Palumbo A (2018) Two oceans on Mars?: history, problems and prospects. In: The ninth Moscow solar system symposium 9M-S3, pp 15–18

    Google Scholar 

  • Hecht MH, Kounaves SP, Quinn R, West SJ, Young SM, Ming DW, Catling D, Clark B, Boynton W, Hoffman J (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325(5936):64–67

    Article  ADS  Google Scholar 

  • Hiesinger H, Head JW III (2000) Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J Geophys Res, Planets 105(E5):11999–12022

    Article  Google Scholar 

  • Horneck G (2000) The microbial world and the case for Mars. Planet Space Sci 48(11):1053–1063

    Article  ADS  Google Scholar 

  • Irving JD, Knight RJ (2003) Removal of wavelet dispersion from ground-penetrating radar data. Geophysics 68(3):960–970

    Article  ADS  Google Scholar 

  • Ivanov MA, Hiesinger H, Erkeling G, Reiss D (2014) Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: evidence for the ancient ocean. Icarus 228:121–140

    Article  ADS  Google Scholar 

  • Ivanov M, Hiesinger H, Erkeling G, Reiss D (2015) Evidence for large reservoirs of water/mud in Utopia And Acidalia Planitiae on Mars. Icarus 248:383–391

    Article  ADS  Google Scholar 

  • Jol HM (2008) Ground penetrating radar theory and applications. Elsevier

    Google Scholar 

  • Joseph RG, Duxbury NS, Kidron GJ, Gibson CH, Schild R (2020b) Mars: life, subglacial oceans, abiogenic photosynthesis, seasonal increases and replenishment of atmospheric oxygen. Open Astron 29(1):189–209

    Article  ADS  Google Scholar 

  • Joseph R, Graham L, Büdel B, Jung P, Kidron G, Latif K, Armstrong R, Mansour H, Ray J, Ramis G (2020a) Mars: algae, lichens, fossils, minerals, microbial mats, and stromatolites in Gale crater. J Astrobiol Space Sci Rev 3(1):40–111

    Google Scholar 

  • Kargel JS, Baker VR, Begét JE, Lockwood JF, Péwé TL, Shaw JS, Strom RG (1995) Evidence of ancient continental glaciation in the Martian northern plains. J Geophys Res, Planets 100(E3):5351–5368

    Article  Google Scholar 

  • Kreslavsky MA, Head JW III (2000) Kilometer-scale roughness of Mars: results from MOLA data analysis. J Geophys Res, Planets 105(E11):26695–26711

    Article  Google Scholar 

  • Kreslavsky M, Head JW III (2002a) Mars: nature and evolution of young latitude-dependent water-ice-rich mantle. Geophys Res Lett 29(15):14-1–14-4

    Article  Google Scholar 

  • Kreslavsky MA, Head JW (2002) Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. J Geophys Res, Planets 107(E12):4-1–4-25

    Article  Google Scholar 

  • Kurokawa H, Sato M, Ushioda M, Matsuyama T, Moriwaki R, Dohm JM, Usui T (2014) Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in Martian meteorites. Earth Planet Sci Lett 394:179–185

    Article  ADS  Google Scholar 

  • Lai J, Xu Y, Zhang X, Xiao L, Yan Q, Meng X, Zhou B, Dong Z, Zhao D (2019) Comparison of dielectric properties and structure of lunar regolith at Chang’e-3 and Chang’e-4 landing sites revealed by ground-penetrating radar. Geophys Res Lett 46(22):12783–12793

    Article  ADS  Google Scholar 

  • Lanz JK, Wagner R, Wolf U, Kröchert J, Neukum G (2010) Rift zone volcanism and associated cinder cone field in utopia planitia, Mars. J Geophys Res, Planets 115(E12)

  • Laskar J, Correia AC, Gastineau M, Joutel F, Levrard B, Robutel P (2004) Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170(2):343–364

    Article  ADS  Google Scholar 

  • Lasue J, Mangold N, Hauber E, Clifford S, Feldman W, Gasnault O, Grima C, Maurice S, Mousis O (2013) Quantitative assessments of the Martian hydrosphere. Space Sci Rev 174:155–212

    Article  ADS  Google Scholar 

  • Lauro SE, Pettinelli E, Caprarelli G, Guallini L, Rossi AP, Mattei E, Cosciotti B, Cicchetti A, Soldovieri F, Cartacci M (2021) Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat Astron 5(1):63–70

    Article  ADS  Google Scholar 

  • Laye VJ, DasSarma S (2018) An Antarctic extreme halophile and its polyextremophilic enzyme: effects of perchlorate salts. Astrobiology 18(4):412–418

    Article  ADS  Google Scholar 

  • Levin GV, Straat PA (1976) Viking labeled release biology experiment: interim results. Science 194(4271):1322–1329

    Article  ADS  Google Scholar 

  • Levin GV, Straat PA (1977) Recent results from the Viking labeled release experiment on Mars. J Geophys Res 82(28):4663–4667

    Article  ADS  Google Scholar 

  • Levin GV, Straat PA (1979) Completion of the Viking labeled release experiment on Mars. J Mol Evol 14:167–183

    Article  ADS  Google Scholar 

  • Levy J, Head J, Marchant D (2009a) Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations. J Geophys Res, Planets 114(E1)

  • Levy JS, Head JW, Marchant DR (2009b) Concentric crater fill in Utopia Planitia: history and interaction between glacial “brain terrain” and periglacial mantle processes. Icarus 202(2):462–476

    Article  ADS  Google Scholar 

  • Li C, Xing S, Lauro SE, Su Y, Dai S, Feng J, Cosciotti B, Di Paolo F, Mattei E, Xiao Y (2017) Pitfalls in gpr data interpretation: false reflectors detected in lunar radar cross sections by Chang’e-3. IEEE Trans Geosci Remote Sens 56(3):1325–1335

    Article  ADS  Google Scholar 

  • Li C, Su Y, Pettinelli E, Xing S, Ding C, Liu J, Ren X, Lauro SE, Soldovieri F, Zeng X (2020) The Moon’s farside shallow subsurface structure unveiled by Chang’E-4 Lunar Penetrating Radar. Sci Adv 6(9):eaay6898

    Article  ADS  Google Scholar 

  • Li C, Zhang R, Yu D, Dong G, Liu J, Geng Y, Sun Z, Yan W, Ren X, Su Y (2021) China’s Mars exploration mission and science investigation. Space Sci Rev 217(4):57

    Article  ADS  Google Scholar 

  • Li C, Zheng Y, Wang X, Zhang J, Wang Y, Chen L, Zhang L, Zhao P, Liu Y, Lv W (2022) Layered subsurface in Utopia basin of Mars revealed by Zhurong rover radar. Nature 610(7931):308–312

    Article  ADS  Google Scholar 

  • Li X, Yao W, Wang H (2023) Martian subsurface water ice prediction at the Tianwen-1 mission landing site. Icarus 389:115268

    Article  Google Scholar 

  • Liu H, Sato M (2013) Determination of the phase center position and delay of a Vivaldi antenna. IEICE Electron Express 10(21):20130573–20130573

    Article  Google Scholar 

  • Liu L, Lane JW, Quan Y (1998) Radar attenuation tomography using the centroid frequency downshift method. J Appl Geophys 40(1–3):105–116

    Article  Google Scholar 

  • Liu H, Shi Z, Li J, Liu C, Meng X, Du Y, Chen J (2021) Detection of road cavities in urban cities by 3d ground-penetrating radar. Geophysics 86(3):WA25–WA33

    Article  Google Scholar 

  • Liu H, Li J, Meng X, Zhou B, Fang G, Spencer BF (2022a) Discrimination between dry and water ices by full polarimetric radar: implications for China’s first Martian exploration. IEEE Trans Geosci Remote Sens 61:1–11

    Google Scholar 

  • Liu J, Li C, Zhang R, Rao W, Cui X, Geng Y, Jia Y, Huang H, Ren X, Yan W (2022b) Geomorphic contexts and science focus of the Zhurong landing site on Mars. Nat Astron 6(1):65–71

    Article  ADS  Google Scholar 

  • Liu JJ, Li CL, Zhang RQ, Rao W, Cui XF, Geng Y, Jia Y, Huang H, Ren X, Yan W, Zeng XG, Wen WB, Wang X, Gao XY, Fu Q, Zhu Y, Dong JH, Li HT, Wang XZ, Zuo W, Su Y, Kong DQ, Zhang HB (2022c) Geomorphic contexts and science focus of the Zhurong landing site on Mars. Nat Astron 6(1):65–71

    Article  ADS  Google Scholar 

  • Liu Y, Wu X, Zhao Y-YS, Pan L, Wang C, Liu J, Zhao Z, Zhou X, Zhang C, Wu Y (2022d) Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Sci Adv 8(19):eabn8555

    Article  Google Scholar 

  • Liu S, Su Y, Zhou B, Dai S, Yan W, Li Y, Zhang Z, Du W, Li C (2023) Data pre-processing and signal analysis of Tianwen-1 rover penetrating radar. Remote Sens 15(4):966

    Article  ADS  Google Scholar 

  • Luo W, Cang X, Howard AD (2017) New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nat Commun 8(1):15766

    Article  ADS  Google Scholar 

  • Mangold N (2005) High latitude patterned grounds on Mars: classification, distribution and climatic control. Icarus 174(2):336–359

    Article  ADS  Google Scholar 

  • Mangold N, Gupta S, Gasnault O, Dromart G, Tarnas J, Sholes S, Horgan B, Quantin-Nataf C, Brown A, Le Mouélic S (2021) Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science 374(6568):711–717

    Article  ADS  Google Scholar 

  • Martínez G, Renno NO (2013) Water and brines on Mars: current evidence and implications for MSL. Space Sci Rev 175:29–51

    Article  ADS  Google Scholar 

  • McGill GE (1986) The giant polygons of Utopia, northern Martian plains. Geophys Res Lett 13(8):705–708

    Article  ADS  Google Scholar 

  • McGill GE (1989) Buried topography of Utopia, Mars: persistence of a giant impact depression. J Geophys Res, Solid Earth 94(B3):2753–2759

    Article  MathSciNet  Google Scholar 

  • McGill GE, Hills LS (1992) Origin of giant Martian polygons. J Geophys Res, Planets 97(E2):2633–2647

    Article  Google Scholar 

  • Mellon MT (1997) Small-scale polygonal features on Mars: seasonal thermal contraction cracks in permafrost. J Geophys Res, Planets 102(E11):25617–25628

    Article  Google Scholar 

  • Mellon MT, Jakosky BM (1995) The distribution and behavior of Martian ground ice during past and present epochs. J Geophys Res, Planets 100(E6):11781–11799

    Article  Google Scholar 

  • Mellon MT, Sizemore HG (2022) The history of ground ice at Jezero crater Mars and other past, present, and future landing sites. Icarus 371:114667

    Article  Google Scholar 

  • Mellon MT, Feldman WC, Prettyman TH (2004) The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169(2):324–340

    Article  ADS  Google Scholar 

  • Michalski JR, Onstott TC, Mojzsis SJ, Mustard J, Chan QH, Niles PB, Johnson SS (2018) The Martian subsurface as a potential window into the origin of life. Nat Geosci 11(1):21–26

    Article  ADS  Google Scholar 

  • Mills MM, McEwen AS, Okubo CH (2021) A preliminary regional geomorphologic map in Utopia Planitia of the Tianwen-1 Zhurong landing region. Geophys Res Lett 48(18)

  • Mischna MA (2018) Orbital (climatic) forcing and its imprint on the global landscape. In: Soare RJ, Conway SJ, Clifford SM (eds) Dynamic Mars. Elsevier, Amsterdam, p 3–48

    Chapter  Google Scholar 

  • Möhlmann D (2010) The three types of liquid water in the surface of present Mars. Int J Astrobiol 9(1):45–49

    Article  ADS  Google Scholar 

  • Morgan GA, Putzig NE, Perry MR, Sizemore HG, Bramson AM, Petersen EI, Bain ZM, Baker DM, Mastrogiuseppe M, Hoover RH (2021) Availability of subsurface water-ice resources in the northern mid-latitudes of Mars. Nat Astron 5(3):230–236

    Article  ADS  Google Scholar 

  • Mouginis-Mark PJ (1978) Morphology of Martian rampart craters. Nature 272(5655):691–694

    Article  ADS  Google Scholar 

  • Niemann H, Lösekann T, De Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443(7113):854–858

    Article  ADS  Google Scholar 

  • Niles PB, Michalski J (2009) Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat Geosci 2(3):215–220

    Article  ADS  Google Scholar 

  • Niu S, Zhang F, Di K, Gou S, Yue Z (2022) Layered ejecta craters in the candidate landing areas of China’s first Mars mission (Tianwen-1): implications for subsurface volatile concentrations. J Geophys Res, Planets 127(3):e2021JE007089

    Article  ADS  Google Scholar 

  • Noe Dobrea E, Asphaug E, Grant J, Kessler M, Mellon M (2007) Patterned ground as an alternative explanation for the formation of brain coral textures in the mid latitudes of Mars: HiRISE observations of lineated valley fill textures. In: Seventh international conference on Mars, vol 1353, p 3358

    Google Scholar 

  • Nürnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, Cardona T, Krausz E, Boussac A (2018) Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science 360(6394):1210–1213

    Article  ADS  Google Scholar 

  • Oehler DZ, Etiope G (2017) Methane seepage on Mars: where to look and why. Astrobiology 17(12):1233–1264

    Article  ADS  Google Scholar 

  • Orgel C, Hauber E, van Gasselt S, Reiss D, Johnsson A, Ramsdale JD, Smith I, Swirad ZM, Séjourné A, Wilson JT (2019) Grid mapping the northern plains of Mars: a new overview of recent water-and ice-related landforms in Acidalia Planitia. J Geophys Res, Planets 124(2):454–482

    Article  ADS  Google Scholar 

  • Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M (2018) Radar evidence of subglacial liquid water on Mars. Science 361(6401):490–493

    Article  ADS  Google Scholar 

  • Osterloo M, Hamilton V, Bandfield J, Glotch T, Baldridge A, Christensen P, Tornabene L, Anderson F (2008) Chloride-bearing materials in the southern highlands of Mars. Science 319(5870):1651–1654

    Article  ADS  Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to \(-35^{\circ}\)C. FEMS Microbiol Ecol 59(2):500–512

    Article  Google Scholar 

  • Pasolli E, Melgani F, Donelli M (2009) Automatic analysis of GPR images: a pattern-recognition approach. IEEE Trans Geosci Remote Sens 47(7):2206–2217

    Article  ADS  Google Scholar 

  • Pedersen G, Head J III (2011) Chaos formation by sublimation of volatile-rich substrate: evidence from galaxias chaos, Mars. Icarus 211(1):316–329

    Article  ADS  Google Scholar 

  • Peters KJ (1992) Coherent-backscatter effect: a vector formulation accounting for polarization and absorption effects and small or large scatterers. Phys Rev B 46(2):801

    Article  ADS  MathSciNet  Google Scholar 

  • Picardi G, Biccari D, Seu R, Marinangeli L, Johnson W, Jordan R, Plaut J, Safaenili A, Gurnett D, Ori G (2004) Performance and surface scattering models for the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS). Planet Space Sci 52(1–3):149–156

    Article  ADS  Google Scholar 

  • Qu SJ, Li B, Zhang J, Wang Y, Li CF, Zhu YZ, Ling ZC, Chen SB (2022) Evaluation and analysis of dust storm activity in Tianwen-1 landing area based on the moderate resolution imaging camera observations and Mars daily global maps. Remote Sens 14(1)

  • Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice Hall International, Englewood Cliffs

    Google Scholar 

  • Rice JW Jr, Edgett KS (1997) Catastrophic flood sediments in Chryse Basin, Mars, and Quincy Basin, Washington: application of sandar facies model. J Geophys Res, Planets 102(E2):4185–4200

    Article  Google Scholar 

  • Sauterey B, Charnay B, Affholder A, Mazevet S, Ferrière R (2022) Early Mars habitability and global cooling by h2-based methanogens. Nat Astron 6(11):1263–1271

    Article  ADS  Google Scholar 

  • Schon SC, Head JW, Fassett CI (2009) Unique chronostratigraphic marker in depositional fan stratigraphy on Mars: evidence for ca. 1.25 Ma gully activity and surficial meltwater origin. Geology 37(3):207–210

    Article  ADS  Google Scholar 

  • Séjourné A, Costard F, Gargani J, Soare R, Fedorov A, Marmo C (2011) Scalloped depressions and small-sized polygons in western utopia planitia, Mars: a new formation hypothesis. Planet Space Sci 59(5–6):412–422

    Article  ADS  Google Scholar 

  • Séjourné A, Costard F, Swirad ZM, Łosiak A, Bouley S, Smith I, Balme MR, Orgel C, Ramsdale JD, Hauber E (2019) Grid mapping the northern plains of Mars: using morphotype and distribution of ice-related landforms to understand multiple ice-rich deposits in utopia planitia. J Geophys Res, Planets 124(2):483–503

    Article  ADS  Google Scholar 

  • Sizemore H, Mellon M, Searls M, Lemmon M, Zent A, Heet T, Arvidson R, Blaney D, Keller H (2010) In situ analysis of ice table depth variations in the vicinity of small rocks at the Phoenix landing site. J Geophys Res, Planets 115(E1)

  • Skinner J Jr, Tanaka K (2001) Regional emplacement history of the Utopia and Elysium plains deposits, Mars. In: Lunar and planetary science conference, p 2154

    Google Scholar 

  • Smith PH, Tamppari L, Arvidson R, Bass D, Blaney D, Boynton WV, Carswell A, Catling D, Clark B, Duck T (2009) H2O at the Phoenix landing site. Science 325(5936):58–61

    Article  ADS  Google Scholar 

  • Soare RJ, Burr DM, Tseung JMWB (2005) Possible pingos and a periglacial landscape in northwest Utopia Planitia. Icarus 174(2):373–382

    Article  ADS  Google Scholar 

  • Squyres SW (1979) The distribution of lobate debris aprons and similar flows on Mars. J Geophys Res, Solid Earth 84(B14):8087–8096

    Article  Google Scholar 

  • Stuurman C, Osinski G, Holt J, Levy J, Brothers T, Kerrigan M, Campbell B (2016) Sharad detection and characterization of subsurface water ice deposits in utopia planitia, Mars. Geophys Res Lett 43(18):9484–9491

    Article  ADS  Google Scholar 

  • Sullivan R, Anderson R, Biesiadecki J, Bond T, Stewart H (2011) Cohesions, friction angles, and other physical properties of Martian regolith from Mars exploration rover wheel trenches and wheel scuffs. J Geophys Res, Planets 116(E2)

  • Tanaka KL, Scott DH (1987) Geologic map of the polar regions of Mars. Geologic Investigations Series Map 1-1802-C. U.S. Geological Survey

  • Tanaka KL, Skinner JA, Hare TM (2005) Geologic map of the northern plains of Mars. Scientific Investigations Map 2888. U.S. Geological Survey

  • Tanaka KL, Fortezzo CM, Hayward RK, Rodriguez JAP, Skinner JA Jr (2011) History of plains resurfacing in the scandia region of Mars. Planet Space Sci 59(11–12):1128–1142

    Article  ADS  Google Scholar 

  • Tanaka K, Skinner J Jr, Dohm J, Irwin R III, Kolb E, Fortezzo C, Platz T, Michael G, Hare T (2014a) Geologic map of Mars: Us geological survey scientific investigations map 3292, scale 1:20,000,000, pamphlet 43 p. US Geological Survey: Reston, VA, USA

  • Thomson B, Head J III (1999) Utopia basin, Mars: a new assessment using Mars Orbiter Laser Altimeter (MOLA) data. In: Lunar and planetary science conference, p 1894

    Google Scholar 

  • Turbet M, Forget F, Head JW, Wordsworth R (2017) 3d modelling of the climatic impact of outflow channel formation events on early Mars. Icarus 288:10–36

    Article  ADS  Google Scholar 

  • Turner G, Siggins AF (1994) Constant Q attenuation of subsurface radar pulses. Geophysics 59(8):1192–1200

    Article  ADS  Google Scholar 

  • Ulaby F, Long D (2015) Microwave radar and radiometric remote sensing. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sensing: active and passive. Vol 3: From theory to applications. Artech House, Norwood, MA

    Google Scholar 

  • Ulrich M, Morgenstern A, Günther F, Reiss D, Bauch K, Hauber E, Rössler S, Schirrmeister L (2010) Thermokarst in Siberian ice-rich permafrost: Comparison to asymmetric scalloped depressions on Mars. J Geophys Res, Planets 115(E10)

  • Ulrich M, Wagner D, Hauber E, de Vera J-P, Schirrmeister L (2012) Habitable periglacial landscapes in Martian mid-latitudes. Icarus 219(1):345–357

    Article  ADS  Google Scholar 

  • Wasilewski TG (2018) Evaluation of drilling-based water extraction methods for Martian ISRU from mid-latitude ice resources. Planet Space Sci 158:16–24

    Article  ADS  Google Scholar 

  • Watters TR, Campbell B, Carter L, Leuschen CJ, Plaut JJ, Picardi G, Orosei R, Safaeinili A, Clifford SM, Farrell WM (2007) Radar sounding of the Medusae Fossae Formation Mars: equatorial ice or dry, low-density deposits? Science 318(5853):1125–1128

    Article  ADS  Google Scholar 

  • Weingarten EA, Zee PC, Jackson CR (2022) Microbial communities in saltpan sediments show tolerance to Mars analog conditions, but susceptibility to chloride and perchlorate toxicity. Astrobiology 22(7):838–850

    Article  ADS  Google Scholar 

  • Wu B, Dong J, Wang Y, Li Z, Chen Z, Liu WC, Zhu J, Chen L, Li Y, Rao W (2021a) Characterization of the candidate landing region for Tianwen-1—China’s first mission to Mars. Earth Space Sci 8(6):e2021EA001670

    Article  ADS  Google Scholar 

  • Wu X, Liu Y, Zhang C, Wu Y, Zhang F, Du J, Liu Z, Xing Y, Xu R, He Z (2021b) Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars. Icarus 370:114657

    Article  Google Scholar 

  • Wu B, Dong J, Wang Y, Rao W, Sun Z, Li Z, Tan Z, Chen Z, Wang C, Liu WC (2022a) Landing site selection and characterization of Tianwen-1 (Zhurong rover) on Mars. J Geophys Res, Planets 127(4):e2021JE007137

    Article  ADS  Google Scholar 

  • Ye B, Qian Y, Xiao L, Michalski JR, Li Y, Wu B, Qiao L (2021) Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars. Earth Planet Sci Lett 576:117199

    Article  Google Scholar 

  • Zhou B, Shen S, Lu W, Liu Q, Tang C, Li S, Fang G (2020) The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission. Earth Planet Phys 4(4):345–354

    Article  ADS  Google Scholar 

  • Zhou H, Feng X, Dong Z, Liu C, Liang W (2021) Application of denoising cnn for noise suppression and weak signal extraction of lunar penetrating radar data. Remote Sens 13(4):779

    Article  ADS  Google Scholar 

  • Zhou H, Feng X, Ding C, Dong Z, Liu C, Liang W (2022a) Heterogeneous weathering process of lunar regolith revealed by polarimetric attributes analysis of Chang’e-4 lunar penetrating radar data acquired during the Yutu-2 turnings. Geophys Res Lett 49(13):e2022GL099207

    Article  ADS  Google Scholar 

  • Zhou H, Feng X, Zhou B, Dong Z, Fang G, Zeng Z, Liu C, Li Y, Lu W (2022b) Polarized orientation calibration and processing strategies for Tianwen-1 full-polarimetric Mars rover penetrating radar data. IEEE Trans Geosci Remote Sens 60:1–14

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.42241139, 62227901 and 42004099), Shenzhen Science and Technology Innovation Commission (Grant No. 20231121103211001), the Opening Fund of the Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences (No. LDSE202005), the Fund of Shanghai Institute of Aerospace System Engineering (No. PZ_YY_SYF_JY200275), the Shenzhen Municipal Government Investment Project (No. 2106_440300_04_03_901272), Shenzhen University innovation development fund basic experiment project (No. 2022631), the National Innovation and Entrepreneurship Training Program for College Students (No. 202310590016) and the team “Searching for Subglacial Water on Mars with Orbiting Ground Penetrating Radars” of the International Space Science Institute (ISSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Ding.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Note by the Editor: This is a Special Communication. In addition to invited review papers and topical collections, Space Science Reviews publishes unsolicited Special Communications. These are papers linked to an earlier topical volume/collection, report-type papers, or timely papers dealing with a strong space-science-technology combination (such papers summarize the science and technology of an instrument or mission in one paper).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Ding, C., Su, Y. et al. Water Ice and Possible Habitability in the Landing Area of Tianwen-1 Mission. Space Sci Rev 220, 35 (2024). https://doi.org/10.1007/s11214-024-01068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-024-01068-z

Keywords

Navigation