Skip to main content
Log in

The Effect of Horizontal Density-Inhomogeneity on Spicules Driven by Vertical Velocity Pulses

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Observations have shown that the chromosphere networks are rich in features with density higher than the ambient atmosphere. To investigate the effect of horizontal density-inhomogeneity on spicules, here we carry out two-dimensional magnetohydrodynamic (MHD) simulations based on the shock scenario. In a gravitationally stratified solar atmosphere, we insert a vertical preexisting density structure (PeDS) that has higher density than the ambient regions, and then we drive a spicule by a velocity pulse at the bottom of the chromosphere. We find a horizontal flow of 2 km s−1 caused by a rarefaction wave that may have a certain material supplement effect for the spicules and a V-shaped shock front in the chromosphere. An interesting feature found in our experiment is that the existence of PeDS leads to the formation of multiple threads in spicules. Their formation results from the larger density, lower transition region, and higher speeds of magnetoacoustic waves in the PeDS than at its outer boundaries. Parameter studies show that multiple threads of a spicule can be more pronounced in cases with wider velocity pulses and a larger internal/external density ratio in the PeDS. Our study shows that the horizontal density-inhomogeneity in the solar atmosphere is an important factor that is responsible for the complexity of a spicule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Beckers, J.M.: 1968, Solar spicules (invited review paper). Solar Phys. 3, 367. DOI. ADS.

    Article  ADS  Google Scholar 

  • Beckers, J.M.: 1972, Solar spicules. Annu. Rev. Astron. Astrophys. 10, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, Q.-Q.: 1992, Fluid motions in the solar atmosphere. I – On the origin and decay of spicules. II – A spicule model with emission lines. Astron. Astrophys. 266, 537. ADS.

    ADS  Google Scholar 

  • Dara, H.C., Koutchmy, S., Suematsu, Y.: 1998, Properties of H\(\alpha \) spicules from disk and limb high-resolution observations. In: Guyenne, T.-D. (ed.) Solar Jets and Coronal Plumes, ESA Special Publication 421, 255. ADS.

    Google Scholar 

  • De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., Schrijver, C.J., Title, A.M.: 2011, The origins of hot plasma in the solar corona. Science 331, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • González-Avilés, J.J., Murawski, K., Zaqarashvili, T.V.: 2022, Numerical simulations of a two-fluid jet at a magnetic null point in a solar arcade. Mon. Not. Roy. Astron. Soc. 515, 5094. DOI. ADS.

    Article  ADS  Google Scholar 

  • González-Avilés, J.J., Murawski, K., Srivastava, A.K., Zaqarashvili, T.V., González-Esparza, J.A.: 2021, Numerical simulations of macrospicule jets under energy imbalance conditions in the solar atmosphere. Mon. Not. Roy. Astron. Soc. 505, 50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hansteen, V.H., De Pontieu, B., Rouppe van der Voort, L., van Noort, M., Carlsson, M.: 2006, Dynamic fibrils are driven by magnetoacoustic shocks. Astrophys. J. Lett. 647, L73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Heggland, L., De Pontieu, B., Hansteen, V.H.: 2007, Numerical simulations of shock wave-driven chromospheric jets. Astrophys. J. 666, 1277. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hollweg, J.V.: 1982, On the origin of solar spicules. Astrophys. J. 257, 345. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiao, F., Xia, L., Li, B., Huang, Z., Li, X., Chandrashekhar, K., Mou, C., Fu, H.: 2015, Sources of quasi-periodic propagating disturbances above a solar polar coronal hole. Astrophys. J. Lett. 809, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Konkol, P., Murawski, K., Zaqarashvili, T.V.: 2012, Numerical simulations of magnetoacoustic oscillations in a gravitationally stratified solar corona. Astron. Astrophys. 537, A96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuźma, B., Murawski, K., Kayshap, P., Wójcik, D., Srivastava, A.K., Dwivedi, B.N.: 2017b, Two-fluid numerical simulations of solar spicules. Astrophys. J. 849, 78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuźma, B., Murawski, K., Zaqarashvili, T.V., Konkol, P., Mignone, A.: 2017a, Numerical simulations of solar spicules: adiabatic and non-adiabatic studies. Astron. Astrophys. 597, A133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, X., Zhang, J., Yang, S., Hou, Y., Erdélyi, R.: 2018, Observing Kelvin-Helmholtz instability in solar blowout jet. Sci. Rep. 8, 8136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martínez-Sykora, J., De Pontieu, B., Hansteen, V.H., Rouppe van der Voort, L., Carlsson, M., Pereira, T.M.D.: 2017, On the generation of solar spicules and Alfvénic waves. Science 356, 1269. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A.: 2007, PLUTO: a numerical code for computational astrophysics. Astrophys. J. Suppl. 170, 228. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murawski, K., Zaqarashvili, T.V.: 2010, Numerical simulations of spicule formation in the solar atmosphere. Astron. Astrophys. 519, A8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panesar, N.K., Sterling, A.C., Moore, R.L., Tiwari, S.K., De Pontieu, B., Norton, A.A.: 2018, IRIS and SDO observations of solar jetlets resulting from network-edge flux cancelation. Astrophys. J. Lett. 868, L27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pasachoff, J.M., Jacobson, W.A., Sterling, A.C.: 2009, Limb spicules from the ground and from space. Solar Phys. 260, 59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Poletto, G.: 2015, Solar coronal plumes. Living Rev. Solar Phys. 12, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Qi, Y., Huang, Z., Xia, L., Li, B., Fu, H., Liu, W., Sun, M., Hou, Z.: 2019, On the relation between transition region network jets and coronal plumes. Solar Phys. 294, 92. DOI. ADS.

    Article  ADS  Google Scholar 

  • Qi, Y., Huang, Z., Xia, L., Fu, H., Guo, M., Hou, Z., Liu, W., Sun, M., Liu, D.: 2022, Statistical properties of H\(\alpha \) jets in the polar coronal hole and their implications in coronal activities. Astron. Astrophys. 657, A118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Raouafi, N.-E., Stenborg, G.: 2014, Role of transients in the sustainability of solar coronal plumes. Astrophys. J. 787, 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Roberts, B.: 1979, Spicules: the resonant response to granular buffeting? Solar Phys. 61, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Skogsrud, H., Rouppe van der Voort, L., De Pontieu, B.: 2014, On the multi-threaded nature of solar spicules. Astrophys. J. Lett. 795, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Smirnova, V., Konkol, P.M., Solov’ev, A.A., Murawski, K.: 2016, Numerical simulations of solar spicule jets at a magnetic null-point. Solar Phys. 291, 3207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sterling, A.C.: 2000, Solar spicules: a review of recent models and targets for future observations – (invited review). Solar Phys. 196, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sterling, A.C., Mariska, J.T.: 1990, Numerical simulations of the rebound shock model for solar spicules. Astrophys. J. 349, 647. DOI. ADS.

    Article  ADS  Google Scholar 

  • Suematsu, Y., Ichimoto, K., Katsukawa, Y., Shimizu, T., Okamoto, T., Tsuneta, S., Tarbell, T., Shine, R.A.: 2008, High resolution observations of spicules with Hinode/SOT. In: Matthews, S.A., Davis, J.M., Harra, L.K. (eds.) First Results from Hinode, Astronomical Society of the Pacific Conference Series 397, 27. ADS.

    Google Scholar 

  • Tanaka, K.: 1974, Evolution of chromospheric fine structures on the disk. In: Athay, R.G. (ed.) Chromospheric Fine Structure 56, 239. ADS.

    Chapter  Google Scholar 

  • Tsiropoula, G., Alissandrakis, C.E., Schmieder, B.: 1994, Time evolution of fine structures in the solar chromosphere. Astron. Astrophys. 290, 285. ADS.

    ADS  Google Scholar 

  • Tziotziou, K., Tsiropoula, G., Mein, P.: 2003, On the nature of the chromospheric fine structure. I. Dynamics of dark mottles and grains. Astron. Astrophys. 402, 361. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tziotziou, K., Tsiropoula, G., Mein, P.: 2004, On the nature of the chromospheric fine structure. II. Intensity and velocity oscillations of dark mottles and grains. Astron. Astrophys. 423, 1133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Lagg, A., Nordlund, Å.: 2009, Coupling from the photosphere to the chromosphere and the corona. Space Sci. Rev. 144, 317. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wei, H., Huang, Z., Long, D.M., Fu, H., Xia, L., Xiong, M., Li, B.: 2023, Concurrence of a Kelvin-Helmholtz instability and Kármán vortex street in the Sun’s corona. Astron. Astrophys. 678, L7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Erdélyi, R.: 2009, Oscillations and waves in solar spicules. Space Sci. Rev. 149, 355. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewer for the constructive and helpful suggestions and comments. PLUTO is developed at the Dipartimento di Fisica, Torino University in a joint collaboration with INAF, Osservatorio Astronomico di Torino and the SCAI Department of CINECA.

Funding

This research is supported by the National Natural Science Foundation of China (42174201, 42230203) and the National Key R&D Program of China No. 2021YFA0718600.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and Z.H. wrote the manuscript; C.Z. carried out the simulations under the supervisions of B.L., Z.H., M.S. and M.G.; Y.Q. and L.X. contributed to initiation of the project; all the authors had discussion on the work and reviewed and commented the manuscript.

Corresponding author

Correspondence to Zhenghua Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(MP4 2.5 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, Z., Li, B. et al. The Effect of Horizontal Density-Inhomogeneity on Spicules Driven by Vertical Velocity Pulses. Sol Phys 299, 53 (2024). https://doi.org/10.1007/s11207-024-02301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02301-2

Keywords

Navigation