Skip to main content
Log in

Improvement in right heart function following kidney transplantation in esrd patients: insights from speckle tracking echocardiography analysis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is commonly associated with unfavorable cardiovascular outcomes and remains the leading cause of mortality in individuals with end-stage renal disease (ESRD). Despite substantial knowledge about the impact of CKD on the left heart, the right heart, which holds significant clinical relevance, has often been overlooked and inadequately assessed in ESRD patients who have undergone kidney transplant (KTx). This study aimed to evaluate the effects of KTx on the right heart chambers in ESRD patients. 57 adult KTx candidates were enrolled in this prospective longitudinal study, while 49 of them were included in the final assessment. Patients underwent a comprehensive cardiac assessment, including conventional echocardiography, speckle tracking echocardiography, and three-dimensional heart modeling both before and after surgery. Echocardiographic assessments showed significant increases in right ventricular (RV) ejection fraction, RV fractional area change (RVFAC), tricuspid annular plain systolic excursion, RV fractional shortening, right atrial (RA) reservoir, conduit, and booster strains, and RV global longitudinal strain (RVGLS). Moreover, significant reductions in RV end-diastolic volume (RVEDV), RV end-systolic volume (RVESV), RV stroke volume, RV end-diastolic diameter (RVEDD) in mid-cavity view, systolic pulmonary artery pressure was observed (all P values < 0.05). However, no significant difference was found in S velocity, as well as RVEDD in basal and apex-to-annulus view. Moreover, pre-KTx measurements of RVGLS, RVEDD (apex-to-annulus diameter), RV fractional shortening, and S velocity were predictors of RVGLS after KTx. RA conduit strain was also identified as a predictor of RA conduit strain after KTx. Additionally, age, RVEDV, RVESV, RVFAC, and RA reservoir strain before KTx were identified as independent predictors of RA reservoir strain after KTx. The findings of this study demonstrate a significant improvement in right heart function following KTx. Furthermore, strain analysis can provide valuable insights for predicting right heart function after KTx.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rodger RS (2012) Approach to the management of endstage renal disease. Clin Med (Lond) 12(5):472–475

    Article  PubMed  Google Scholar 

  2. Wouk N (2021) End-stage renal disease: Medical Management. Am Fam Physician 104(5):493–499

    PubMed  Google Scholar 

  3. O’Shaughnessy MM et al (2015) Differences in initial treatment modality for end-stage renal disease among glomerulonephritis subtypes in the USA. Nephrol Dialysis Transplantation 31(2):290–298

    Google Scholar 

  4. Johansen KL et al (2021) US Renal Data System 2020 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis 77(4 Suppl 1):A7–a8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Navaneethan SD et al (2015) Cause-specific deaths in non-dialysis-dependent CKD. J Am Soc Nephrol 26(10):2512–2520

    Article  CAS  PubMed Central  Google Scholar 

  6. Stack AG, Saran R (2002) Clinical correlates and mortality impact of left ventricular hypertrophy among new ESRD patients in the United States. Am J Kidney Dis 40(6):1202–1210

    Article  Google Scholar 

  7. Foley RN et al (1995) The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol 5(12):2024–2031

    Article  CAS  PubMed  Google Scholar 

  8. Hamidi S et al (2018) The effect of kidney transplantation on speckled tracking echocardiography findings in patients on hemodialysis. J Cardiovasc Thorac Res 10(2):90–94

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hewing B et al (2016) Improved left ventricular structure and function after successful kidney transplantation. Kidney Blood Press Res 41(5):701–709

    Article  CAS  Google Scholar 

  10. Hawwa N et al (2015) Reverse remodeling and prognosis following kidney transplantation in contemporary patients with Cardiac Dysfunction. J Am Coll Cardiol 66(16):1779–1787

    Article  PubMed  PubMed Central  Google Scholar 

  11. London G (2001) Pathophysiology of cardiovascular damage in the early renal population. Nephrol Dial Transpl 16(Suppl 2):3–6

    Article  Google Scholar 

  12. Schärer K, Schmidt KG, Soergel M (1999) Cardiac function and structure in patients with chronic renal failure. Pediatr Nephrol 13(9):951–965

    Article  PubMed  Google Scholar 

  13. Drogalis-Kim D et al (2016) Right sided heart failure and pulmonary hypertension: new insights into disease mechanisms and treatment modalities. Prog Pediatr Cardiol 43:71–80

    Article  Google Scholar 

  14. Devasahayam J et al (2020) Pulmonary hypertension in end-stage renal disease. Respir Med 164:105905

    Article  PubMed  Google Scholar 

  15. Bozbas SS et al (2011) Renal transplant improves pulmonary hypertension in patients with end stage renal disease. Multidiscip Respir Med 6(3):155–160

    Article  PubMed  PubMed Central  Google Scholar 

  16. Badano LP et al (2018) Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 19(6):591–600

    Article  PubMed  Google Scholar 

  17. Nagata Y et al (2017) Prognostic value of right ventricular ejection Fraction assessed by transthoracic 3D Echocardiography. Circ Cardiovasc Imaging 10(2):e005384

    Article  PubMed  Google Scholar 

  18. Leibundgut G et al (2010) Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiogr 23(2):116–126

    Article  PubMed  Google Scholar 

  19. Lang RM et al (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 25(1):3–46

    Article  PubMed  Google Scholar 

  20. Koo TK, Li MY (2016) A Guideline of selecting and reporting Intraclass correlation coefficients for Reliability Research. J Chiropr Med 15(2):155–163

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karavelioğlu Y et al (2015) Echocardiographic assessment of right ventricular functions in nondiabetic normotensive hemodialysis patients. Interv Med Appl Sci 7(3):95–101

    PubMed  PubMed Central  Google Scholar 

  22. Haddad F et al (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117(13):1717–1731

    Article  PubMed  Google Scholar 

  23. Paneni F et al (2010) Right ventricular dysfunction in patients with end-stage renal disease. Am J Nephrol 32(5):432–438

    Article  PubMed  Google Scholar 

  24. Lee JH, Park JH (2018) Strain analysis of the right ventricle using two-dimensional Echocardiography. J Cardiovasc Imaging 26(3):111–124

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khani M et al (2020) Effect of kidney transplantation on right ventricular function, assessment by 2- dimensional speckle tracking echocardiography. Cardiovasc Ultrasound 18(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ladányi Z et al (2023) Get to the heart of pediatric kidney transplant recipients: evaluation of left- and right ventricular mechanics by three-dimensional echocardiography. Front Cardiovasc Med 10:1094765

    Article  PubMed  PubMed Central  Google Scholar 

  27. Arslan A et al (2023) Cardiac function in children after kidney transplant. Exp Clin Transpl 21(1):16–21

    Article  Google Scholar 

  28. Hashi AA et al (2021) Cardiac MRI assessment of the right ventricle pre-and post-kidney transplant. Int J Cardiovasc Imaging 37(5):1757–1766

    Article  PubMed  Google Scholar 

  29. Cai S et al (2022) Assessments of right ventricular strain using cardiac magnetic resonance imaging following kidney transplantation. Nephrol (Carlton) 27(4):371–375

    Article  Google Scholar 

  30. Tang M et al (2018) Pulmonary hypertension, mortality, and Cardiovascular Disease in CKD and ESRD patients: a systematic review and Meta-analysis. Am J Kidney Dis 72(1):75–83

    Article  PubMed  Google Scholar 

  31. Yigla M et al (2009) Pulmonary hypertension is an independent predictor of mortality in hemodialysis patients. Kidney Int 75(9):969–975

    Article  PubMed  Google Scholar 

  32. Reque J et al (2016) Pulmonary hypertension is Associated with Mortality and Cardiovascular events in chronic kidney Disease patients. Am J Nephrol 45(2):107–114

    Article  PubMed  Google Scholar 

  33. Ravanshad S et al (2022) Comparison of pulmonary artery pressure before and after kidney transplantation in kidney transplant patients with pulmonary hypertension. ARYA Atherosclerosis J 18(November):1–6

    Google Scholar 

  34. Casas-Aparicio G et al (2010) The effect of successful kidney transplantation on ventricular dysfunction and pulmonary hypertension. Transpl Proc 42(9):3524–3528

    Article  CAS  Google Scholar 

  35. Modin D et al (2019) Right ventricular function evaluated by tricuspid annular plane systolic excursion predicts Cardiovascular Death in the General Population. J Am Heart Association 8(10):e012197

    Article  Google Scholar 

  36. Sanders P et al (2003) Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation 108(12):1461–1468

    Article  PubMed  Google Scholar 

  37. Sanders P et al (2004) Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling. Circulation 109(12):1514–1522

    Article  PubMed  Google Scholar 

  38. Stiles MK et al (2009) Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the second factor. J Am Coll Cardiol 53(14):1182–1191

    Article  PubMed  Google Scholar 

  39. Hoit BD (2005) Assessing Atrial Mechanical Remodeling and its consequences. Circulation 112(3):304–306

    Article  PubMed  Google Scholar 

  40. Vakilian F et al (2021) Right atrial strain in the Assessment of Right Heart Mechanics in patients with heart failure with reduced ejection fraction. J Cardiovasc Imaging 29(2):135–143

    Article  PubMed  Google Scholar 

  41. Wright LM et al (2018) Association with right atrial strain with right atrial pressure: an invasive validation study. Int J Cardiovasc Imaging 34(10):1541–1548

    Article  PubMed  Google Scholar 

  42. Gaynor SL et al (2005) Reservoir and conduit function of right atrium: impact on right ventricular filling and cardiac output. Am J Physiol Heart Circ Physiol 288(5):H2140–H2145

    Article  CAS  PubMed  Google Scholar 

  43. Peluso D et al (2013) Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc Imaging 14(11):1106–1114

    Article  PubMed  Google Scholar 

  44. Sun Z-Y et al (2023) Echocardiographic evaluation of the right atrial size and function: relevance for clinical practice. Am Heart J Plus: Cardiol Res Pract, : p. 100274

  45. Meucci MC et al (2023) Left atrial structural and functional response in kidney transplant recipients treated with mesenchymal stromal cell therapy and early Tacrolimus Withdrawal. J Am Soc Echocardiogr 36(2):172–179

    Article  PubMed  Google Scholar 

  46. Bolignano D et al (2013) Pulmonary hypertension in CKD. Am J Kidney Dis 61(4):612–622

    Article  PubMed  Google Scholar 

  47. Wali RK et al (2005) Effect of kidney transplantation on left ventricular systolic dysfunction and congestive heart failure in patients with end-stage renal disease. J Am Coll Cardiol 45(7):1051–1060

    Article  Google Scholar 

  48. Hung J et al (1980) Uremic cardiomyopathy–effect of hemodialysis on left ventricular function in end-stage renal failure. N Engl J Med 302(10):547–551

    Article  CAS  PubMed  Google Scholar 

  49. Herod JW, Ambardekar AV (2014) Right ventricular systolic and diastolic function as assessed by speckle-tracking echocardiography improve with prolonged isolated left ventricular assist device support. J Card Fail 20(7):498–505

    Article  PubMed  Google Scholar 

  50. Dandel M et al (2020) Accurate assessment of right heart function before and after long-term left ventricular assist device implantation. Expert Rev Cardiovasc Ther 18(5):289–308

    Article  CAS  PubMed  Google Scholar 

  51. Kang MK (2021) Right atrial strain as a surrogate marker for right ventricular function in patients with heart failure. J Cardiovasc Imaging 29(2):144–146

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MK and TA designed the study. AM worked on proper statistical analysis of the data. TA and SPSM collected the data. EG outlined, drafted, and contributed to the writing of the manuscript. All authors contributed to the preparation of the draft, reviewed, and approved the final edition of the manuscript.

Corresponding authors

Correspondence to Amir Moradi, Erfan Ghadirzadeh or Tooba Akbari.

Ethics declarations

Ethical approval

The Research Ethics Committee of Shahid Beheshti University of Medical Sciences reviewed and approved this study (IR.SBMU.retech.1401.291).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publication

The authors affirm that human research participants provided informed consent for publication of the images in all Figures.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, M., Moradi, A., Ghadirzadeh, E. et al. Improvement in right heart function following kidney transplantation in esrd patients: insights from speckle tracking echocardiography analysis. Int J Cardiovasc Imaging (2024). https://doi.org/10.1007/s10554-024-03103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10554-024-03103-0

Keywords

Navigation