Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-07T05:17:12.731Z Has data issue: false hasContentIssue false

Pilot performance during simulated point and boundary avoidance tracking tasks

Published online by Cambridge University Press:  24 April 2024

Q. Xia
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Milano, 20156, Italy School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
D. Marchesoli
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Milano, 20156, Italy
P. Masarati*
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Milano, 20156, Italy
M. Liu
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
*
Corresponding author: P. Masarati; Email: pierangelo.masarati@polimi.it

Abstract

Helicopters are used in complex and harsh operational environments, such as search and rescue missions and firefighting, that require operating in ground proximity, tracking targets while avoiding impacting obstacles, namely a combination of point tracking (positive) and boundary avoidance (negative) objectives. A simulation task representing simplified helicopter dynamics is used to investigate point tracking and boundary avoidance tasks. The variance and regression analysis are used to study the effects of task conditions on participants’ tracking errors and input aggression. The overall tracking error shows a negative correlation with input aggression. The participants tend to have higher input aggression and lower tracking error near the boundaries, exposing the switching of manipulation input strategies under different task conditions. It also suggests a potential way of designing simulation tasks for human operators manipulating helicopters and a trigger for investigating pilots’ biodynamic feedthrough.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pavel, M.D., Jump, M., Dang-Vu, B., et al. Adverse rotorcraft pilot couplings—past, present and future challenges. Prog. Aerosp. Sci., 2013, 62, pp 151.CrossRefGoogle Scholar
McRuer, D.T. Understanding and Preventing Unfavourable Pilot-Vehicle Interactions. Washington, DC, USA: National Academy Press, 1997.Google Scholar
Padfield, G.D. and Lu, L. The potential impact of adverse aircraft-pilot couplings on the safety of tilt-rotor operations. Aeronaut. J., 2022, 126, (1304), pp 16171647.CrossRefGoogle Scholar
Military Specification. Flying qualities of piloted airplanes. Technical report, MIL-F-8785C, 1980.Google Scholar
Military Standard. Flying qualities of piloted aircraft. Technical report, US Dept. of Defense MIL-STD-1797A, 1990.Google Scholar
Gray, W. Boundary-escape tracking: A new conception of hazardous PIO. Technical report, Air Force Flight Test Center Edwards AFB, CA, USA, 2004.CrossRefGoogle Scholar
Gray, W. Boundary avoidance tracking: a new pilot tracking model. In AIAA Atmospheric Flight Mechanics Conference and Exhibit, San Francisco, CA, USA, AIAA, 2005, p 5810.CrossRefGoogle Scholar
Wilson, J.C., Nair, S., Scielzo, S. and Larson, E.C. Objective measures of cognitive load using deep multi-modal learning: a use-case in aviation. Proc. ACM Interact. Mobile Wearable Ubiquit. Technol., 2021, 5, (1), pp 135.CrossRefGoogle Scholar
Babu, M.D. Investigation of boundary avoidance tracking theory from ocular parameters through simulator and inflight studies. l’Aerotecnica, Missili Spazio 2021, 100, (4), pp 303319.CrossRefGoogle Scholar
Mitchell, D.G. and Klyde, D.H. This is pilot gain. In AIAA Scitech 2019 Forum, San Diego, CA, USA, AIAA, 2019, p 0562.CrossRefGoogle Scholar
Lu, L. and Jump, M. Pilot modelling for boundary hazard perception and reaction study. In 43rd European Rotorcraft Forum, ERF 2017, Milano, Italy, 2017, 1, pp 640652.Google Scholar
Ji, H., Lu, L., White, M.D. and Chen, R. Advanced pilot modeling for prediction of rotorcraft handling qualities in turbulent wind. Aerosp. Sci. Technol., 2022, 123, p 107501.CrossRefGoogle Scholar
Gratton, G.B. and Bromfield, M.A. Aspects of General Aviation flight safety research. In RAeS GA Conference 2008; Gratton and Bromfield on Safety Research, Cambridge, Royal Aeronautical Society, 2008, pp 1–12.Google Scholar
Craun, R., Acosta, D.M., Beard, S.D., Hardy, G., Leonard, M.W. and Weinstein, M.J. Boundary avoidance tracking for instigating pilot induced oscillations. In AIAA Atmospheric Flight Mechanics (AFM) Conference, Boston, MA, USA, AIAA, 2013, p 4688.CrossRefGoogle Scholar
Afloare, A.-I. Pilot induced oscillations detection using boundary avoidance tracking procedure. Sci. Bull. Ser. D, 2015, 77, (4), pp 27–34.Google Scholar
Wilson, J.C. Cognition and Context-Aware Computing: Towards a Situation-Aware System with a Case Study in Aviation. PhD thesis, Southern Methodist University, 2020.Google Scholar
Endsley, M.R. Toward a theory of situation awareness in dynamic systems. Hum. Fact.: J. Hum. Fact. Ergonom. Soc., 1995, 37, (1), pp 3264.CrossRefGoogle Scholar
Endsley, M.R. A systematic review and meta-analysis of direct objective measures of situation awareness: a comparison of SAGAT and SPAM. Hum. Fact., 2021, 63, (1), pp 124150.CrossRefGoogle ScholarPubMed
Endsley, M.R. Sagat: A Methodology for the Measurement of Situation Awareness (Nor Doc 87–83). Hawthorne, CA: Northrop Corporation, p 18, 1987.Google Scholar
Durso, F.T., Hackworth, C.A., Truitt, T.R, Crutchfield, J., Danko, N. and Manning, C.A. Situation awareness as a predictor of performance for en route air traffic controllers. Air Traffic Control Q., 1998, 6, (1), pp 120.CrossRefGoogle Scholar
de Winter, J.C.F., Eisma, Y.B., Cabrall, C.D.D., Hancock, P.A. and Stanton, N.A. Situation awareness based on eye movements in relation to the task environment. Cognit. Technol. Work, 2019, 21, (1), pp 99111.CrossRefGoogle Scholar
Bolstad, C.A, Foltz, P., Franzke, M., Cuevas, H.M., Rosenstein, M. and Costello, A.M. Predicting situation awareness from team communications. In Proceedings of the Human Factors and Ergonomics Society 51st Annual Meeting, Sage, 2007, pp 789–793.CrossRefGoogle Scholar
Jones, D.G. and Endsley, M.R. Can real-time probes provide a valid measure of situation awareness. In Proceedings of the Human Performance, Situation Awareness and Automation: User-Centered Design for the New Millennium, Savannah, GA, USA, 2000, pp 1–6.Google Scholar
Farley, T.C., Hansman, R.J., Amonlirdviman, K. and Endsley, M.R. Shared information between pilots and controllers in tactical air traffic control. J. Guid. Control Dyn., 2000, 23, (5), pp 826836.CrossRefGoogle Scholar
Lu, L. and Jump, M. Multiloop pilot model for boundary-triggered pilot-induced oscillation investigations. J. Guid. Control Dyn., 2014, 37, (6), pp 18631879.CrossRefGoogle Scholar
Feng, C., Wanyan, X., Yang, K., Zhuang, D. and Wu, X. A comprehensive prediction and evaluation method of pilot workload. Technol. Health Care, 2018, 26, (S1), pp 6578.CrossRefGoogle ScholarPubMed
Feng, C., Wanyan, X., Liu, S., Chen, H. and Zhuang, D. An approach to situation awareness (SA) assessment in flight simulation: SA dynamic circulation (SADC) model. Hum. Fact. Ergonom. Manuf. Serv. Ind., 2021, 31, (5), pp 559569.CrossRefGoogle Scholar
Feng, C., Liu, S., Wanyan, X., Chen, H., Min, Y. and Ma, Y. EEG feature analysis related to situation awareness assessment and discrimination. Aerospace, 2022, 9, (10), p 546.CrossRefGoogle Scholar
Zanoni, A., Cocco, A. and Masarati, P. Multibody dynamics analysis of the human upper body for rotorcraft– pilot interaction. Nonlinear Dyn., 2020, 102, (3), pp 15171539.CrossRefGoogle Scholar
Daniele, M., Quaranta, G., Masarati, P. and Zanoni, A. Pilot in the loop simulation of helicopter-ship operations using virtual reality. l’Aerotecnica, Missili Spazio 2020, 99, (1), pp 5362.CrossRefGoogle Scholar
Zanoni, A., Zago, M., Paolini, R., Quaranta, G., Galli, M. and Masarati, P. On task dependence of helicopter pilot biodynamic feedthrough and neuromuscular admittance: an experimental and numerical study. IEEE Trans. Hum.-Mach. Syst., 2021, 51, (5), pp 421431.CrossRefGoogle Scholar
Zanoni, A., Cocco, A., Marchesoli, D., Talamo, C., Masarati, P., Colombo, F., Kemp, S. and Fosco, E. Pilot biomechanics for the definition of a rotorcraft-pilot interaction experiment. In 78th International Annual Forum Vertical Flight Society, The Vertical Flight Society, 2022, pp 18.CrossRefGoogle Scholar
Muscarello, V., Quaranta, G. and Masarati, P. The role of rotor coning in helicopter proneness to collective bounce. Aerosp. Sci. Technol., 2014, 36, pp 103113.CrossRefGoogle Scholar
Jones, M., Jump, M., Lu, L., Yilmaz, D. and Pavel, M.D. Using the phase-aggression criterion to identify rotorcraft pilot coupling events. In 38th European Rotorcraft Forum, Amsterdam, The Netherlands, September 4–7, 2012, pp 1–16.Google Scholar
Gray, W. A generalized handling qualities flight test technique utilizing boundary avoidance tracking. In 2008 U.S. Air Force T&E Days, Los Angeles, CA, USA, AIAA, 2008, pp 1–19.CrossRefGoogle Scholar
Rasmussen, C.E. and Williams, C.K.I. Gaussian Processes for Machine Learning. The MIT Press, 2006.Google Scholar
Friedman, J.H. Greedy function approximation: a gradient boosting machine. Ann. Statist., 2001, 29, (5), pp 11891232.CrossRefGoogle Scholar
Kline, R.B. Beyond Significance Testing: Reforming Data Analysis Methods in Behavioral Research. Washington, DC: American Psychological Association, 2005.Google Scholar
Cumming, G. The new statistics: why and how. Psychol. Sci., 2014, 25, (1), pp 729.CrossRefGoogle Scholar