Skip to main content
Log in

An Efficient Vector-Based CRISPR/Cas9 System in Zebrafish Cell Line

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been widely applied in animals as an efficient genome editing tool. However, the technique is difficult to implement in fish cell lines partially due to the lack of efficient promoters to drive the expression of both sgRNA and the Cas9 protein within a single vector. In this study, it was indicated that the zebrafish U6 RNA polymerase III (ZFU6) promoter could efficiently induce tyrosinase (tyr) gene editing and lead to loss of retinal pigments when co-injection with Cas9 mRNA in zebrafish embryo. Furthermore, an optimized all-in-one vector for expression of the CRISPR/Cas9 system in the zebrafish fibroblast cell line (PAC2) was constructed by replacing the human U6 promoter with ZFU6 promoter, basing on the lentiCRISPRV2 system that widely applied in mammal cells. This new vector could successfully target the cellular communication network factor 2a (ctgfa) gene and demonstrated its function in the PAC2 cell. Notably, the vector could also be used to edit the endogenous EMX1 gene in the mammal 293 T cell line, implying its wide application potential. In conclusion, we established a new gene editing tool for zebrafish cell line, which could be a useful in vitro platform for high-throughput analyzing gene function in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data is provided within the manuscript or supplementary information files.

References

  • Ablain J, Durand EM, Yang S et al (2015) A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 32:756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3:362–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  CAS  PubMed  Google Scholar 

  • Chakrapani V, Patra SK, Panda RP et al (2016) Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Dev Comp Immunol 61:242–247

    Article  CAS  PubMed  Google Scholar 

  • Chang N, Sun C, Gao L et al (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanput W, Mes JJ, Wichers HJ (2014) THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 23:37–45

    Article  CAS  PubMed  Google Scholar 

  • Dehler CE, Boudinot P, Martin SAM et al (2016) Development of an efficient genome editing method by CRISPR/Cas9 in a fish cell line. Mar Biotechnol 18:449–452

    Article  CAS  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edvardsen RB, Leininger S, Kleppe L et al (2014) Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS One 9:e108622

    Article  PubMed  PubMed Central  Google Scholar 

  • Elaswad A, Khalil K, Ye Z et al (2018) Effects of CRISPR/Cas9 dosage on TICAM1 and RBL gene mutation rate, embryonic development, hatchability and fry survival in channel catfish. Sci Rep 8:16499

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng R, Fang L, Cheng Y et al (2015) Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus). Sci Rep 5:10131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratacap RL, Regan T, Dehler CE et al (2020) Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. BMC Biotechnol 20:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratz SJ, Cummings AM, Nguyen JN et al (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamar J, Kültz D (2021) An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters. Sci Rep 11:7854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisano Y, Sakuma T, Nakade S et al (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36:654–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruscha A, Krawitz P, Rechenberg A et al (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp DJHF, Michaels YS, Jamilly M et al (2019) Decoupling tRNA promoter and processing activities enables specific Pol-II Cas9 guide RNA expression. Nat Commun 10:1490

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JF, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Yang H, Zhao J et al (2014) Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197:591–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Ye X, Lin J et al (2022) Comparative transcriptome analysis between muscle and swim bladder reveals key genes regulating collagen deposition in zebrafish. Aquacult Rep 23:101053

    Google Scholar 

  • Liu P, Long L, Xiong K et al (2014a) Heritable/conditional genome editing in C. elegans using a CRISPR-Cas9 feeding system. Cell Res 24:886–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yuan Y, Zhu F et al (2018) Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells. Biol Open 7:bio035170

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wang ZX, Xiao A et al (2014b) Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J Genet Genomics 41:43–46

    Article  PubMed  Google Scholar 

  • Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Shen B, Cui Y et al (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Luo J, Jiang Y et al (2022) Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ Sci B 23:74–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi K, Yoneda M, Sakai N et al (2019) Comprehensive experimental system for a promising model organism candidate for marine teleosts. Sci Rep 9:4948

    Article  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinya M, Kobayashi K, Masuda A et al (2013) Properties of gene knockdown system by vector-based siRNA in zebrafish. Dev Growth Differ 55:755–765

    Article  CAS  PubMed  Google Scholar 

  • Su T, Liu F, Gu P et al (2016) A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep 6:37895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wargelius A, Leininger S, Skaftnesmo KO et al (2016) Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 6:21284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74:2377–2384

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112:3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhao L, Gao Y et al (2017) Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Nucleic Acids Res 45:e28

    PubMed  Google Scholar 

  • Yeh YC, Kinoshita M, Ng TH et al (2017) Using CRISPR/Cas9-mediated gene editing to further explore growth and trade-off effects in myostatin-mutated F4 medaka (Oryzias latipes). Sci Rep 7:11435

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoppo M, Okoniewski N, Pantelyushin S et al (2021) A ribonucleoprotein transfection strategy for CRISPR/Cas9-mediated gene editing and single cell cloning in rainbow trout cells. Cell Biosci 11:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Cuiying Chen from Shantou University for professional advice in this study.

Funding

This work was supported by the National Natural Science Foundation of China (32373108), Natural Science Foundation of Guandong Province (2022A1515010778), Special Fund for Science and Technology of Guangdong Province (STKJ202209036), Department of Education of Guangdong Province (2022ZDZX4006), and Special Fundation for Rural Revitalization of Guangdong Province (Dzxny018).

Author information

Authors and Affiliations

Authors

Contributions

Xiaokang Ye: investigation, formal analysis, writing—original draft preparation; Jiali Lin: investigation, data curation; Qiuji Chen: resources; Jiehuan Lv: resources; Chunsheng Liu: resources; Yuping Wang: resources; Shuqi Wang: writing—review and editing; Xiaobo Wen: writing—review and editing; Fan Lin: conception, supervision, writing—review and editing, funding acquirement.

Corresponding author

Correspondence to Fan Lin.

Ethics declarations

Ethics Approval

All animal procedures were carried out in accordance with the Guideline for the Care and Use of Laboratory Animals of Shantou University.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 519 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Lin, J., Chen, Q. et al. An Efficient Vector-Based CRISPR/Cas9 System in Zebrafish Cell Line. Mar Biotechnol (2024). https://doi.org/10.1007/s10126-024-10320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10126-024-10320-0

Keywords

Navigation