Skip to main content
Log in

ENIGMA: A Web Application for Running Online Artificial Grammar Learning Experiments

  • Original Research
  • Published:
Journal of Psycholinguistic Research Aims and scope Submit manuscript

Abstract

Artificial grammar learning (AGL) is an experimental paradigm frequently adopted to investigate the unconscious and conscious learning and application of linguistic knowledge. This paper will introduce ENIGMA (https://enigma-lang.org) as a free, flexible, and lightweight Web-based tool for running online AGL experiments. The application is optimized for desktop and mobile devices with a user-friendly interface, which can present visual and aural stimuli and elicit judgment responses with RT measures. Without limits in time and space, ENIGMA could help collect more data from participants with diverse personal and language backgrounds and variable cognitive skills. Such data are essential to explain complex factors influencing learners’ performance in AGL experiments and answer various research questions regarding L1/L2 acquisition. The introduction of the core features in ENIGMA is followed by an example study that partially replicated Chen (Lang Acquis 27(3):331–361, 2020) to illustrate possible experimental designs and examine the quality of the collected data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Since the experiment data will be reported and made publicly available in a separate study, they will be shared by the authors upon reasonable requests for the time being.

Notes

  1. , Hulstijn (2015) warned that we should not assume that all L1 patterns must be acquired subconsciously. The acquisition of morphosyntactic aspects, for instance, could be delayed substantially until early childhood, when explicit instruction may begin to become influential in learning the L1 knowledge.

  2. Artificial grammar learning differs from artificial language learning in that the learning input is semantic-free in the former (e.g., meaningless letter strings or sound sequences) but not in the latter (e.g., sound-picture pairs). Readers are referred to Morgan-Short (2020) for subtle distinctions between different artificial linguistic systems. For simplicity in this article, we use AGL as an inclusive term for experiments that expose learners to an artificial linguistic system and test the learnability of hidden structural regularities.

  3. See Hamrick and Sachs (2018) and Reber and Perruchet (2003) for reviews of other common within-group and between-group designs in AGL studies and their pros and cons.

  4. We searched for entries with ‘artificial grammar’ or ‘artificial language’ and ‘experiment’ and without ‘review,’ ‘simulation,’ and ‘reply’ in anywhere except full text to help us narrow down to experimental AGL studies. We still had to manually exclude studies from the search output that do not involve AGL experiments with the typical design reviewed in this section (7 from the 1972–2000 collection and 30 from the 2000–2022 collection; see Appendix C for the excluded studies). The search may have missed some experimental AGL studies without using ‘artificial grammar’ or ‘artificial language’ as a keyword (e.g., Carpenter, 2010; Chan & Leung, 2018; Cristiá et al., 2013; Koo & Callahan, 2012) or because the studies had yet to be indexed in the database at the time (e.g., Beguš, 2022; Chen, 2022). However, we believe the quantitative difference will hold even with a more precise search in an updated database.

  5. It is important to note that this issue may not be specific to AGL studies, as Winter (2019, p. 174) suspected that “most studies in linguistics are underpowered.”

  6. For a guide to power analysis, see Cohen (1988, 1992). Brysbaert and Stevens (2018), Green and MacLeod (2016), and Kumle et al. (2021) are useful tutorials for power analysis in mixed-effects regression modeling.

  7. Martin and Peperkamp (2020) is another rare example that was not included in our database search output. In addition, several AGL studies in our collection were designed to separate training and test phases with an irrelevant task to distract learners from training input. The test phases were thus ‘delayed’ in a way. However, we do not consider these studies to be examples of investigating the lasting effect of learning since the comparison of learning performance across multiple test phases could not be made.

  8. Other Web applications that are both an online experiment toolkit and a crowdsourcing service include Gorilla (Anwyl-Irvine et al., 2021), Pavlovia.org (Open Science Tools, 2022), and PsyToolKit (Stoet, 2017).

  9. For other non-linguistic studies showing the validity of data collected via MTurk, see Buhrmester et al. (2011), Crump et al. (2013), and Paolacci et al. (2010).

  10. https://www.mturk.com/help#can_requesters_outside_us_use_mturk (Retrieved on Nov 20, 2023).

  11. ENIGMA is built using Meteor v2.15 (https://meteor.com), a free and open-source package for developing JavaScript-based Web, mobile, and desktop applications. Researchers who hope to understand the underlying structure of ENIGMA or modify the application for their use could download the source codes of ENIGMA at https://github.com/nthuTYChen/ENIGMA and compile the codes with Meteor.

  12. The stats are based on the result of the Pingdom website speed test (https://tools.pingdom.com/) on Apr 17, 2024.

  13. We understand that the term ‘gender’ is open to different interpretations. Thus, we included an option ‘non-binary’ for sexual orientations that cannot be easily labeled with the traditional male-female dichotomy. In addition, we also include the ‘do not disclose’ option for those who consider this information sensitive and prefer not to share it in ENIGMA. We thank an anonymous reviewer for bringing this issue to our attention.

  14. It is important to note that in Daneman and Merikle’s (1996) meta-analysis, reading and listening WM was a stronger predictor of language comprehension than O-Span WM. However, whether this difference holds for learners’ performance in AGL experiments awaits further investigation. Since operation-span WM is correlated with verbal WM (e.g., Daneman & Tardif, 1987; Kyllonen, 1993; Turner & Engle, 1989), we assume that effects of WM in AGL studies, if any, could still be revealed with O-Span WM measures.

  15. We thank an anonymous reviewer who recommended including these different recall scoring systems in ENIGMA for research purposes.

  16. A complete list of the element settings can be found in our experimenter manual at https://lngproc.hss.nthu.edu.tw/enigmaFiles/exp_instruction_en-us.pdf.

  17. A positive correlation between confidence level and judgment accuracy could be the evidence of target knowledge awareness. Conversely, the lack of this correlation could be treated as the evidence of the unconscious retrieval and application of acquired knowledge.

  18. Participation in other experiments between two test phases of the same experiments is strictly prohibited in ENIGMA, and participants are not allowed to check the experiment list unless they complete or quit their ‘ongoing challenge.’

  19. The data of Chen (2020, 2022) were retrieved from https://osf.io/k36qx/ and https://osf.io/zt8jh/.

  20. The by-item random intercept and random slopes of the main effect were not included since they increased model complexity and led to convergence problems.

  21. The linear mixed-effects model that converged for this separate analysis is logRT ~ Confidence × Device + (1 + Confidence|Participant) + (1|Item).

References

  • Andrade, J., & Baddeley, A. (2011). The contribution of phonological short-term memory to artificial grammar learning. Quarterly Journal of Experimental Psychology, 64(5), 960–974.

    Article  Google Scholar 

  • Anwyl-Irvine, A. L., Dalmaijer, E. S., Hodges, N., & Evershed, J. K. (2021). Realistic precision and accuracy of online experiment platforms web browsers and devices. Behavior Research Methods, 53(4), 1407–1425. https://doi.org/10.3758/s13428-020-01501-5

  • Bailey, H., Dunlosky, J., & Hertzog, C. (2009). Does differential strategy use account for age-related deficits in working-memory performance? Psychology and Aging, 24(1), 82–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates, D., Bolker, B., Maechler, M., & Walker, S. (2022). lme4: Linear mixed-effect models using S4 classes. (1.1–30). http://cran.r-project.org/web/packages/lme4/index.html.

  • Becker, M., & Jonathan, L. (2013). Experigen—An online experiment platform. https://becker.phonologist.org/experigen/.

  • Becker, M., Nevins, A., & Jonathan, L. (2012). Asymmetries in generalizing alternations to and from initial syllables. Language, 88(2), 231–268.

    Article  Google Scholar 

  • Beguš, G. (2022). Distinguishing cognitive from historical influences in phonology. Language, 98(1), 1–34.

    Article  Google Scholar 

  • Blair, L. (2011). The cake is not a lie: How to design effective achievements. Game Developer. https://www.gamedeveloper.com/design/the-cake-is-not-a-lie-how-to-design-effective-achievements-part-3.

  • Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5.

    Article  PubMed  Google Scholar 

  • Bulgarelli, F., & Weiss, D. J. (2021). Desirable difficulties in language learning? How talker variability impacts artificial grammar learning. Language Learning, 71(4), 1085–1121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter, A. C. (2010). A naturalness bias in learning stress. Phonology, 27(3), 345–392.

    Article  Google Scholar 

  • Chan, R. K. W., & Leung, J. H. C. (2018). Implicit knowledge of lexical stress rules: Evidence from the combined use of subjective and objective awareness measures. Applied Psycholinguistics, 39(1), 37–66.

    Article  Google Scholar 

  • Chandler, J., Mueller, P., & Paolacci, G. (2014). Nonnaïveté among Amazon Mechanical Turk workers: Consequences and solutions for behavioral researchers. Behavior Research Methods, 46(1), 112–130.

    Article  PubMed  Google Scholar 

  • Chen, T.-Y. (2020). An inductive learning bias toward phonetically driven tonal phonotactics. Language Acquisition, 27(3), 331–361.

    Article  Google Scholar 

  • Chen, T.-Y. (2021). Inverse reaction time as an awareness measure in artificial grammar learning experiments. The Proceedings of ExLing, 2021, 41–44.

    Google Scholar 

  • Chen, T.-Y. (2022). On the learnability of level-based and unit-based tonal OCP generalizations: An artificial grammar learning study. Glossa: A Journal of General Linguistics, 7(1), 1–45.

    Article  Google Scholar 

  • Chen, T.-Y. (2024). The “starting-small” effect in phonology: Evidence from biased learning of opaque and transparent vowel harmony. Language and Speech. https://doi.org/10.1177/00238309241230625

  • Chong, A. J. (2021). The effect of phonotactics on alternation learning language. In Linguistic Society of America (Vol. 97, No. 2, pp. 213–244). https://doi.org/10.1353/lan.2021.0017

  • Cohen, J. (1988). Statistical power analysis for the behavioral science (2nd ed.). Lawrence Erlbaum.

    Google Scholar 

  • Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98–101.

    Article  Google Scholar 

  • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769–786.

    Article  Google Scholar 

  • Cristia, A., Mielke, J., Daland, R., & Peperkamp, S. (2013). Similarity in the generalization of implicitly learned sound patterns. Laboratory Phonology, 4(2), 259–285.

    Article  Google Scholar 

  • Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon’s Mechanical Turk as a tool for experimental behavioral research. PLoS ONE, 8(3), e57410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Culbertson, J. (2012). Typological universals as reflections of biased learning: Evidence from artificial language learning. Language and Linguistics Compass, 6(5), 310–329.

    Article  Google Scholar 

  • Culbertson, J., Franck, J., Braquet, G., Barrera Navarro, M., & Arnon, I. (2020). A learning bias for word order harmony: Evidence from speakers of non-harmonic languages. Cognition, 204, 104392.

    Article  PubMed  Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 466(2), 450–466.

    Article  Google Scholar 

  • Daneman, M., & Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3(4), 422–433.

    Article  Google Scholar 

  • Daneman, M., & Tardif, T. (1987). Working memory and reading skill re-examined. In M. Coltheart (Ed.), Attention and performance 12: The psychology of reading (pp. 491–508). Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Denhovska, N., Serratrice, L., & Payne, J. (2018). Frequency and working memory effects in incidental learning of a complex agreement pattern. Lingua, 207, 49–70.

    Article  Google Scholar 

  • Dienes, Z. (2007). Subjective measures of unconscious knowledge. Progress in Brain Research, 168, 49–64.

    Article  Google Scholar 

  • Ellis, N. C. (2008). Implicit and explicit knowledge about language. In N. H. Hornberger (Ed.), Encyclopedia of language and education (pp. 1878–1890). Springer.

    Chapter  Google Scholar 

  • Ellis, R. (2005). Measuring implicit and explicit knowledge of a second language: A psychometric study. Studies in Second Language Acquisition, 27(2), 141–172.

    Article  Google Scholar 

  • Enochson, K., & Culbertson, J. (2015). Collecting psycholinguistic response time data using Amazon Mechanical Turk. PLoS ONE, 10(3), e0116946.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erçetin, G., & Alptekin, C. (2013). The explicit/implicit knowledge distinction and working memory: Implications for second-language reading comprehension. Applied Psycholinguistics, 34(4), 727–753.

    Article  Google Scholar 

  • Fernandes, T., Kolinsky, R., & Ventura, P. (2010). The impact of attention load on the use of statistical information and coarticulation as speech segmentation cues. Attention, Perception, & Psychophysics, 72(6), 1522–1532.

    Article  Google Scholar 

  • Finley, S. (2012). Typological asymmetries in round vowel harmony: Support from artificial grammar learning. Language and Cognitive Processes, 27(10), 1550–1562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forkstam, C., Elwér, Å., Ingvar, M., & Petersson, K. M. (2008). Instruction effects in implicit artificial grammar learning: A preference for grammaticality. Brain Research, 1221, 80–92.

    Article  PubMed  Google Scholar 

  • Frank, M. C., & Gibson, E. (2011). Overcoming memory limitations in rule learning. Language Learning and Development, 7(2), 130–148.

    Article  Google Scholar 

  • Gallagher, G. (2013). Learning the identity effect as an artificial language: Bias and generalisation. Phonology, 30(2), 253–295.

    Article  Google Scholar 

  • Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498.

    Article  Google Scholar 

  • Grey, S., Williams, J. N., & Rebuschat, P. (2015). Individual differences in incidental language learning: Phonological working memory, learning styles, and personality. Learning and Individual Differences, 38, 44–53.

    Article  Google Scholar 

  • Hamari, J. (2017). Do badges increase user activity? A field experiment on the effects of gamification. Computers in Human Behavior, 71, 469–478.

    Article  Google Scholar 

  • Hamrick, P., & Sachs, R. (2018). Establishing evidence of learning in experiments employing artificial linguistic systems. Studies in Second Language Acquisition, 40(1), 153–169.

    Article  Google Scholar 

  • Hauser, D., Paolacci, G., & Chandler, J. (2019). Common concerns with MTurk as a participant pool: Evidence and solutions. In F. R. Kardes, P. M. Herr, & N. Schwartz (Eds.), Handbook of research methods in consumer psychology (pp. 305–323). Routledge.

    Google Scholar 

  • Hirsh-Pasek, K., Kemler Nelson, D. G., Jusczyk, P. W., Cassidy, K. W., Druss, B., & Kennedy, L. (1987). Clauses are perceptual units for young infants. Cognition, 26(3), 269–286.

    Article  PubMed  Google Scholar 

  • Hulstijn, J. H. (2015). Explaining phenomena of first and second language acquisition with the constructs of implicit and explicit learning: The virtues and pitfalls of a two-system view. In P. Rebuschat (Ed.), Implicit and explicit learning of languages (pp. 25–46). John Benjamins.

    Chapter  Google Scholar 

  • Hydock, C. (2018). Assessing and overcoming participant dishonesty in online data collection. Behavior Research Methods, 50(4), 1563–1567.

    Article  PubMed  Google Scholar 

  • Inácio, F., Faísca, L., Forkstam, C., Araújo, S., Bramão, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1–14.

    Article  PubMed  Google Scholar 

  • Ipeirotis, P. G. (2010). Demographics of Mechanical Turk. NYU working paper, No. CEDER-10-01. Available at SSRN: https://ssrn.com/abstract=1585030.

  • Ishikawa, K. (2019). Incidental and explicit learning of L2 derivational morphology and the nature of acquired knowledge. Applied Psycholinguistics, 40(6), 1377–1404.

    Article  Google Scholar 

  • Jusczyk, P. W., Friederici, A. D., Wessels, J. M. I., Svenkerud, V. Y., & Jusczyk, A. M. (1993). Infants’ sensitivity to the sound patterns of native language words. Journal of Memory and Language, 32(3), 402–420.

    Article  Google Scholar 

  • Kapa, L. L., & Colombo, J. (2014). Executive function predicts artificial language learning. Journal of Memory and Language, 76, 237–252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katmada, A., Satsiou, A., & Kompatsiaris, I. (2016). Incentive mechanisms for crowdsourcing platforms. In F. Bagnoli, A. Satsiou, I. Stavrakakis, P. Nesi, G. Pacini, Y. Welp, T. Tiropanis, & D. DiFranzo (Eds.), INSCI 2016: Internet science (pp. 3–18). Springer.

    Google Scholar 

  • Koo, H., & Callahan, L. (2012). Tier-adjacency is not a necessary condition for learning phonotactic dependencies. Language and Cognitive Processes, 27(10), 1425–1432.

    Article  Google Scholar 

  • Kumle, L., Võ, M.L.-H., & Draschkow, D. (2021). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. Behavioral Research Methods, 53(6), 2528–2543.

    Article  Google Scholar 

  • Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the four-sources model. The Journal of General Psychology, 120(3), 375–405.

    Article  Google Scholar 

  • Lai, J., & Poletiek, F. H. (2013). How “small” is “starting small” for learning hierarchical centre-embedded structures? Journal of Cognitive Psychology, 25(4), 423–435.

    Article  Google Scholar 

  • Lee, C., & Kurumada, C. (2021). Learning maximum absolute meaning through reasoning about speaker intentions. Language Learning, 71(2), 326–368.

    Article  Google Scholar 

  • Lotz, A., & Kinder, A. (2011). Rapid communication: Sex differences in artificial grammar learning: Evidence for different strategies in men and women. Quarterly Journal of Experimental Psychology, 64(3), 417–424.

    Article  Google Scholar 

  • Lotz, A., Kinder, A., & Lachnit, H. (2009). Multiple regression analyses in artificial-grammar learning: The importance of control groups. Quarterly Journal of Experimental Psychology, 62(3), 576–584.

    Article  Google Scholar 

  • Maie, R., & Dekeyser, R. M. (2020). Conflicting evidence of explicit and implicit knowledge from objective and subjective measures. Studies in Second Language Acquisition, 42(2), 359–382.

    Article  Google Scholar 

  • Maldonado, M., & Culbertson, J. (2021). Nobody doesn’t like negative concord. Journal of Psycholinguistic Research, 50(6), 1401–1416.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, A., & Peperkamp, S. (2020). Phonetically natural rules benefit from a learning bias: A re-examination of vowel harmony and disharmony. Phonology, 37(1), 65–90.

    Article  Google Scholar 

  • Mason, W., & Watts, D. J. (2009). Financial incentives and the “performance of crowds.” In Proceedings of the ACM SIGKDD workshop on human computation—HCOMP ’09 (pp. 77–85).

  • McDaniel, R. (2016). What we can learn about digital badges from video games. In D. Ifenthaler, N. Bellin-Mularski, & D.-K. Mah (Eds.), Foundation of digital badges and micro-credentials (pp. 325–342). Springer.

    Chapter  Google Scholar 

  • Merkx, M., Rastle, K., & Davis, M. H. (2011). The acquisition of morphological knowledge investigated through artificial language learning. Quarterly Journal of Experimental Psychology, 64(6), 1200–1220.

    Article  Google Scholar 

  • Mirković, J., & Gaskell, M. G. (2016). Does sleep improve your grammar? Preferential consolidation of arbitrary components of new linguistic knowledge. PLoS ONE, 11(4), e0152489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreton, E., & Pater, J. (2012a). Structure and substance in artificial-phonology learning, part I: Structure. Language and Linguistics Compass, 6(11), 686–701.

    Article  Google Scholar 

  • Moreton, E., & Pater, J. (2012b). Structure and substance in artificial-phonology learning, part II: Substance. Language and Linguistics Compass, 6(11), 702–718.

    Article  Google Scholar 

  • Morgan-Short, K. (2020). Insights into the neural mechanisms of becoming bilingual: A brief synthesis of second language research with artificial linguistic systems. Bilingualism: Language and Cognition, 23(1), 87–91.

    Article  Google Scholar 

  • Myers, J., Jusczyk, P. W., Kemler Nelson, D. G., Charles-Luce, J., Woodward, A. L., & Hirsh-Pasek, K. (1996). Infants’ sensitivity to word boundaries in fluent speech. Journal of Child Language, 23(1), 1–30.

    Article  PubMed  Google Scholar 

  • Open Science Tools. (2022). Pavlovia: Where behaviour is studied. https://pavlovia.org.

  • Opitz, B., & Kotz, S. A. (2012). Ventral premotor cortex lesions disrupt learning of sequential grammatical structures. Cortex, 48(6), 664–673.

    Article  PubMed  Google Scholar 

  • Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on Amazon Mechanical Turk. Judgment and Decision Making, 5(5), 411–419.

    Article  Google Scholar 

  • Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prickett, B. (2019). Learning biases in opaque interactions. Phonology, 36(4), 627–653.

    Article  Google Scholar 

  • R Core Team. (2023). R: A language and environment for statistical computing (4.2.3). http://www.r-project.org/.

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6(6), 855–863.

    Article  Google Scholar 

  • Reber, R., & Perruchet, P. (2003). The use of control groups in artificial grammar learning. The Quarterly Journal of Experimental Psychology Section A, 56(1), 97–115.

    Article  Google Scholar 

  • Robinson, P. (2005). Cognitive abilities, chunk-strength, and frequency effects in implicit artificial grammar and incidental L2 learning: Replications of Reber, Walkenfeld, and Hernstadt (1991) and Knowlton and Squire (1996) and their relevance for SLA. Studies in Second Language Acquisition, 27(2), 235–268.

    Article  Google Scholar 

  • Rogers, J., Révész, A., & Rebuschat, P. (2016). Implicit and explicit knowledge of inflectional morphology. Applied Psycholinguistics, 37(4), 781–812.

    Article  Google Scholar 

  • Salthouse, T. A. (1994). The aging of working memory. Neuropsychology, 8(4), 535–543.

    Article  Google Scholar 

  • Schiff, R., Sasson, A., Star, G., & Kahta, S. (2017). The role of feedback in implicit and explicit artificial grammar learning: A comparison between dyslexic and non-dyslexic adults. Annals of Dyslexia, 67(3), 333–355.

    Article  PubMed  Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User’s guide. Psychology Software Tools, Incorporated.

  • Sonbul, S., & Schmitt, N. (2013). Explicit and implicit lexical knowledge: Acquisition of collocations under different input conditions. Language Learning, 63(1), 121–159.

    Article  Google Scholar 

  • Sprouse, J. (2011). A validation of Amazon Mechanical Turk for the collection of acceptability judgments in linguistic theory. Behavior Research Methods, 43(1), 155–167.

    Article  PubMed  Google Scholar 

  • Stockinger, T., Koelle, M., Lindemann, P., Kranz, M., Diewald, S., Möller, A., & Roalter, L. (2015). Towards leveraging behavioral economics in mobile application design. In T. Reiners & L. C. Wood (Eds.), Gamification in education and business (pp. 105–131). Springer.

    Chapter  Google Scholar 

  • Stoet, G. (2017). PsyToolkit: A novel web-based method for running online questionnaires and reaction-time experiments. Teaching of Psychology, 44(1), 24–31.

    Article  Google Scholar 

  • Tabullo, Á., Arismendi, M., Wainselboim, A., Primero, G., Vernis, S., Segura, E., Zanutto, S., & Yorio, A. (2012). On the learnability of frequent and infrequent word orders: An artificial language learning study. Quarterly Journal of Experimental Psychology, 65(9), 1848–1863.

    Article  Google Scholar 

  • Tanaka, D., Kiyokawa, S., Yamada, A., Dienes, Z., & Shigemasu, K. (2008). Role of selective attention in artificial grammar learning. Psychonomic Bulletin & Review, 15(6), 1154–1159.

    Article  Google Scholar 

  • Tang, K., & Baer-Henny, D. (2023). Modelling L1 and the artificial language during artificial language learning. Laboratory Phonology: Journal of the Association for Laboratory Phonology, 14(1), 1–54.

    Article  Google Scholar 

  • Toomer, M., & Elgort, I. (2019). The development of implicit and explicit knowledge of collocations: A conceptual replication and extension of Sonbul and Schmitt (2013). Language Learning, 69(2), 405–439.

    Article  Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127–154.

    Article  Google Scholar 

  • Vafaee, P., Suzuki, Y., & Kachisnke, I. (2017). Validating grammaticality judgment tests. Studies in Second Language Acquisition, 39(1), 59–95.

    Article  Google Scholar 

  • Werker, J. F., & Lalonde, C. E. (1988). Cross-language speech perception: Initial capabilities and developmental change. Developmental Psychology, 24(5), 672–683.

    Article  Google Scholar 

  • Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 49–63.

    Article  Google Scholar 

  • Winter, B. (2019). Statistics for linguists: An introduction using R. Routledge.

    Book  Google Scholar 

  • Wonnacott, E., Newport, E. L., & Tanenhaus, M. K. (2008). Acquiring and processing verb argument structure: Distributional learning in a miniature language. Cognitive Psychology, 56(3), 165–209.

    Article  PubMed  Google Scholar 

  • Zimmerer, V. C., Cowell, P. E., & Varley, R. A. (2011). Individual behavior in learning of an artificial grammar. Memory & Cognition, 39(3), 491–501.

    Article  Google Scholar 

Download references

Acknowledgements

I am extremely grateful for the encouraging and helpful comments on the work from two anonymous reviewers and the assistance from Ssu-Han Chang, Wei-Chin Chang, Yi-Shan Lin, Wei-Hsin Lo, Tzu-Hsuan Tseng, Yan-Yun Tu, Hong-Yi Wang, and Bo-Ting Yang in the project. I also thank James Myers for his input at an early stage of the ENIGMA development.

Funding

The research was funded by the project “A Comprehensive Examination of Evidence and Methodology in Artificial Grammar Learning” of the Ministry of Science and Technology (now known as the National Science and Technology Council) in Taiwan (Project #108-2410-H-007-030-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Ying Chen.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare in this research.

Ethical Approval

The current research involving human participants was reviewed and approved by the Research Ethics Office of National Tsing Hua University in Taiwan (File #10805HS050).

Human and Animal Rights

The current research involving human participants was reviewed and approved by the Research Ethics Office of National Tsing Hua University in Taiwan (File #10805HS050).

Informed Consent

All participants attending the online experiment gave their informed consent by signing an electronic consent form before the experiment could be administered in the Web application. They were informed of their full anonymity in the consent form and understood that their demographic (e.g., age, gender), digital (e.g., IP address, device screen resolution), and behavioral data (e.g., reaction time, response accuracy) collected in the study would be fully delinked from their identity in any published works.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Experiment AGL Studies in 1972–1999

Altmann, G. T. M., Dienes, Z., & Goode, A. (1995). Modality independence of implicitly learned grammatical knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 899–912.

Billman, D. (1989). Systems of correlations in rule and category learning: Use of structured input in learning syntactic categories. Language and Cognitive Processes, 4(2), 127–155.

Brooks, P. J., Braine, M. D. S., Catalano, L., & Brody, R. E. (1993). Acquisition of gender-like noun subclasses in an artificial language: The contribution of phonological markers to learning. Journal of Memory and Language, 32(1), 76–95.

Buchner, A. (1994). Indirect effects of synthetic grammar learning in an identification task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(3), 550–566.

Byrne, B., & Davidson, E. (1985). On putting the horse before the cart: Exploring conceptual bases of word order via acquisition of a miniature artificial language. Journal of Memory and Language, 24(4), 377–389.

Cook, V. J. (1988). Language learners' extrapolation of word order in micro-artificial languages. Language Learning, 38(4), 497–529.

De Graaff, R. (1997). The eXperanto experiment: Effects of explicit instruction on second language acquisition. Studies in Second Language Acquisition, 19(2), 249–276.

Dienes, Z., Altmann, G. T. M., Kwan, L., & Goode, A. (1995). Unconscious knowledge of artifical grammars is applied strategically. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(5), 1322–1338.

Dienes, Z., Altmann, G., Gao, S., & Goode, A. (1995). The transfer of implicit knowledge across domains. Language and Cognitive Processes, 10(3–4), 363–367.

Gomez, R. L. (1997). Transfer and complexity in artificial grammar learning. Cognitive Psychology, 33(2), 154–207.

Gomez, R. L., & Gerken, L. (1999). Artificial grammar learning by 1-year-olds leads to specific and abstract knowledge. Cognition, 70(2), 109–135.

Gomez, R. L., & Schvaneveldt, R. W. (1994). What is learned from artificial grammars? transfer tests of simple association. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(2), 396–410.

Higham, P. A. (1997). Chunks are not enough: The insufficiency of feature frequency-based explanations of artificial grammar learning. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Experimentale, 51(2), 126–138.

Knowlton, B. J., Ramus, S. J., & Squire, L. R. (1992). Intact artificial grammar learning in amnesia: Dissociation of classification learning and explicit memory for specific instances. Psychological Science, 3(3), 172–179.

Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends on implicit acquisition of both abstract and exemplar-specific information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(1), 169–181.

Knowlton, B. J., & Squire, L. R. (1994). The information acquired during artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(1), 79–91.

Lengyel, Z., & Navracsics, J. (1995). What does translation mean to children? Perspectives: Studies in Translatology, 2, 235–242.

Manza, L., & Bornstein, R. F. (1995). Affective discrimination and the implicit learning process. Consciousness and Cognition, 4(4), 399–409.

McAndrews, M. P., & Moscovitch, M. (1985). Rule-based and exemplar-based classification in artificial grammar learning. Memory & Cognition, 13(5), 469–475.

McDonald, J. L., & Plauche, M. (1995). Single and correlated cues in an artificial language learning paradigm. Language and Speech, 38(3), 223–236.

Nagata, H. (1987). Extraction of linguistically relevant pragmatic contrast through language learning. Journal of Psycholinguistic Research, 16(1), 43–61.

Reber, A. S., & Allen, R. (1978). Analogic and abstraction strategies in synthetic grammar learning: A functionalist interpretation. Cognition, 6(3), 189–221.

Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word segmentation: The role of distributional cues. Journal of Memory and Language, 35(4), 606–621.

Shanks, D. R., Johnstone, T., & Staggs, L. (1997). Abstraction processes in artificial grammar learning. The Quarterly Journal of Experimental Psychology, Section A: Human Experimental Psychology, 50(1), 216–252.

Valian, V., & Levitt, A. (1996). Prosody and adults' learning of syntactic structure. Journal of Memory and Language, 35(4), 497–516.

Vroomen, J., Tuomainen, J., & De Gelder, B. (1998). The roles of word stress and vowel harmony in speech segmentation. Journal of Memory and Language, 38(2), 133–149.

Appendix B. Non-experimental AGL Studies Excluded from the 1972–1999 Search Results

Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2(10), 406–416.

Dienes, Z. (1992). Connectionist and memory-array models of artificial grammar learning. Cognitive Science, 16(1), 41–79.

Dienes, Z., & Perner, J. (1999). A theory of implicit and explicit knowledge. Behavioral and Brain Sciences, 22(5), 735–808.

Higham, P. A., & Vokey, J. R. (1994). Recourse to stored exemplars is not necessarily explicit: A comment on knowlton, ramus, and squire (1992). Psychological Science, 5(1), 59–60.

Johnstone, T., & Shanks, D. R. (1999). Two mechanisms in implicit artificial grammar learning? comment on meulemans and van der linden (1997). Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(2), 524–531.

McDonald, J. L. (1997). Language acquisition: The acquisition of linguistic structure in normal and special populations. Annual Review of Psychology, 48, 215–241.

Appendix C. Experimental AGL Studies in 2000–2022

Amato, M. S., & MacDonald, M. C. (2010). Sentence processing in an artificial language: Learning and using combinatorial constraints. Cognition, 116(1), 143–148.

Andrade, J., & Baddeley, A. (2011). The contribution of phonological short-term memory to artificial grammar learning. The Quarterly Journal of Experimental Psychology, 64(5), 960–974.

Antoniou, M., Liang, E., Ettlinger, M., & Wong, P. C. M. (2015). The bilingual advantage in phonetic learning. Bilingualism, 18(4), 683–695. https://doi.org/10.1017/S1366728914000777

Arnon, I., & Ramscar, M. (2012). Granularity and the acquisition of grammatical gender: How order-of-acquisition affects what gets learned. Cognition, 122(3), 292–305.

Bahl, M., Plante, E., & Gerken, L. (2009). Processing prosodic structure by adults with language-based learning disability. Journal of Communication Disorders, 42(5), 313–323.

Baptista, M., Gelman, S. A., & Beck, E. (2016). Testing the role of convergence in language acquisition, with implications for creole genesis. The International Journal of Bilingualism, 20(3), 269–296. https://doi.org/10.1177/1367006914552459

Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83, 62–78. https://doi.org/10.1016/j.jml.2015.04.004

Becker, M., Nevins, A., & Levine, J. (2012). Asymmetries in generalizing alternations to and from initial syllables. Language, 88(2), 231–268. https://doi.org/10.1353/lan.2012.0049

Bierman, D. J., Destrebecqz, A., & Cleeremans, A. (2005). Intuitive decision making in complex situations: Somatic markers in an artificial grammar learning task. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 297–305.

Bly, B. M., Carrion, R. E., & Rasch, B. (2009). Domain-specific learning of grammatical structure in musical and phonological sequences. Memory & Cognition, 37(1), 10–20.

Boll-Avetisyan, N., & Kager, R. (2014). OCP-PLACE in speech segmentation. Language and Speech, 57(3), 394–421.

Breiss, C. (2020). Constraint cumulativity in phonotactics: Evidence from artificial grammar learning studies. Phonology, 37(4), 551–576. https://doi.org/10.1017/S0952675720000275

Bulgarelli, F., & Weiss, D. J. (2021). Desirable Difficulties in Language Learning? How Talker Variability Impacts Artificial Grammar Learning. Language Learning, 71(4), 1085–1121.

Chandler, J., Mueller, P., & Paolacci, G. (2014). Nonnaïveté among Amazon Mechanical Turk workers: Consequences and solutions for behavioral researchers. Behavior Research Methods, 46(1), 112–130.

Chen, T.-Y. (2020). An inductive learning bias toward phonetically driven tonal phonotactics. Language Acquisition, 27(3), 331–361.

Chong, A. J. (2021). The effect of phonotactics on alternation learning. Language, 97(2), 213–244.

Coetzee, A. W. (2009). Learning lexical indexation. Phonology, 26(1), 109–145.

Comeaux, I., & McDonald, J. L. (2018). Determining the effectiveness of visual input enhancement across multiple linguistic cues. Language Learning, 68(1), 5–45. https://doi.org/10.1111/lang.12255

Cristiá, A., & Seidl, A. (2008). Is infants' learning of sound patterns constrained by phonological features? Language Learning and Development, 4(3), 203. https://doi.org/10.1080/15475440802143109

Culbertson, J., Jarvinen, H., Haggarty, F., & Smith, K. (2019). Children’s sensitivity to phonological and semantic cues during noun class learning: Evidence for a phonological bias. Language, 95(2), 268–293. https://doi.org/10.1353/lan.2019.0031

Culbertson, J., Schouwstra, M., & Kirby, S. (2020). From the world to word order: Deriving biases in noun phrase order from statistical properties of the world. Language, 96(3), 696.

Curtin, S., Mintz, T. H., & Christiansen, M. H. (2005). Stress changes the representational landscape: Evidence from word segmentation. Cognition, 96(3), 233–262.

de la Cruz-Pavía I., Werker, J. F., Vatikiotis-Bateson Eric, & Judit, G. (2020). Finding phrases: The interplay of word frequency, phrasal prosody and co-speech visual information in chunking speech by monolingual and bilingual adults. Language and Speech, 63(2), 264–291. https://doi.org/10.1177/0023830919842353

de la Cruz-Pavía I., Marino C., & Gervain J. (2021). Learning word order: early beginnings. Trends in Cognitive Sciences, 25(9), 802–812.

de Vries, M.,H., Barth, A. C. R., Maiworm, S., Knecht, S., Zwitserlood, P., & Floel, A. (2010). Electrical stimulation of broca's area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience, 22(11), 2427–2436.

de Vries, M.,H., Monaghan, P., Knecht, S., & Zwitserlood, P. (2008). Syntactic structure and artificial grammar learning: The learnability of embedded hierarchical structures. Cognition, 107(2), 763–774.

Domangue, T. J., Mathews, R. C., Sun, R., Roussel, L. G., & Guidry, C. E. (2004). Effects of model-based and memory-based processing on speed and accuracy of grammar string generation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(5), 1002–1011.

Durvasula, K., & Liter, A. (2020). There is a simplicity bias when generalising from ambiguous data. Phonology, 37(2), 177–213. https://doi.org/10.1017/S0952675720000093

Eitam, B., Schul, Y., & Hassin, R. R. (2009). Goal relevance and artificial grammar learning. The Quarterly Journal of Experimental Psychology, 62(2), 228–238.

Endress, A. D., & Mehler, J. (2009). Primitive computations in speech processing. The Quarterly Journal of Experimental Psychology, 62(11), 2187–2209.

Estes, K. G., Gluck, S. C., & Bastos, C. (2015). Flexibility in statistical word segmentation: Finding words in foreign speech. Language Learning and Development, 11(3), 252. https://doi.org/10.1080/15475441.2014.926730

Ettlinger, M., Bradlow, A. R., & Wong, P. C. M. (2009). The persistence and obliteration of opaque interactions. Papers from the Regional Meetings, Chicago Linguistic Society, 45(1), 79–93.

Fehér, O., Wonnacott, E., & Smith, K. (2016). Structural priming in artificial languages and the regularisation of unpredictable variation. Journal of Memory and Language, 91, 158–180. https://doi.org/10.1016/j.jml.2016.06.002

Fernandes, T., Kolinsky, R., & Ventura, P. (2010). The impact of attention load on the use of statistical information and coarticulation as speech segmentation cues. Attention, Perception & Psychophysics, 72(6), 1522–1532.

Fernandes, T., Kolinsky, R., & Ventura, P. (2009). The metamorphosis of the statistical segmentation output: Lexicalization during artificial language learning. Cognition, 112(3), 349–366.

Finley, S. (2011). The privileged status of locality in consonant harmony. Journal of Memory and Language, 65(1), 74–83.

Finley, S. (2012). Testing the limits of long-distance learning: Learning beyond a three-segment window. Cognitive Science, 36(4), 740–756.

Finley, S. (2015). Learning nonadjacent dependencies in phonology: Transparent vowels in vowel harmony. Language, 91(1), 48–72. https://doi.org/10.1353/lan.2015.0010

Finley, S. (2017). Learning metathesis: Evidence for syllable structure constraints. Journal of Memory and Language, 92, 142–157. https://doi.org/10.1016/j.jml.2016.06.005

Finley, S. (2021). Learning Exceptions in Phonological Alternations. Language and Speech64(4), 991–1017.

Finley, S., & Badecker, W. (2009). Artificial language learning and feature-based generalization. Journal of Memory and Language, 61(3), 423–437.

Forkstam, C., Elwer, A., Ingvar, M., & Petersson, K. M. (2008). Instruction effects in implicit artificial grammar learning: A preference for grammaticality. Brain Research, 1221(24), 80–92.

Franck, J., Rotondi, I., & Frauenfelder, U. H. (2016). Learning structure-dependent agreement in a hierarchical artificial grammar. Journal of Memory and Language, 87, 84–104. https://doi.org/10.1016/j.jml.2015.11.003

Frank, M. C., & Gibson, E. (2011). Overcoming memory limitations in rule learning. Language Learning and Development, 7(2), 130. https://doi.org/10.1080/15475441.2010.512522

Gallagher, G. (2013). Learning the identity effect as an artificial language: Bias and generalisation. Phonology, 30(2), 253–295.

Gerken, L. (2006). Decisions, decisions: Infant language learning when multiple generalizations are possible. Cognition, 98(3), B67–B74.

Gervain, J., Nespor, M., Mazuka, R., Horie, R., & Mehler, J. (2008). Bootstrapping word order in prelexical infants: A Japanese–Italian cross-linguistic study. Cognitive Psychology, 57(1), 56–74.

Gomez, R. L., Gerken, L., & Schvaneveldt, R. W. (2000). The basis of transfer in artificial grammar learning. Memory & Cognition, 28(2), 253–263.

Gonzales, K., Gerken, L., & Gomez, R. L. (2015). Does hearing two dialects at different times help infants learn dialect-specific rules? Cognition, 140, 60–71.

Grama, I. C., Kerkhoff, A., & Wijnen, F. (2016). Gleaning structure from sound: The role of prosodic contrast in learning non-adjacent dependencies. Journal of Psycholinguistic Research, 45(6), 1427–1449. https://doi.org/10.1007/s10936-016-9412-8

Guest, D. J., Dell, G. S., & Cole, J. S. (2000). Violable constraints in language production: Testing the transitivity assumpton of optimality theory. Journal of Memory and Language, 42(2), 272–299.

Hall, J., Van Horne, A. O., & Farmer, T. (2018). Distributional learning aids linguistic category formation in school-age children. Journal of Child Language, 45(3), 717–735. https://doi.org/10.1017/S0305000917000435

Hall, J., Van Horne, A. J. O., McGregor, K. K., & Farmer, T. A. (2018). Individual and developmental differences in distributional learning. Language, Speech & Hearing Services in Schools (Online), 49(3), 694–709. https://doi.org/10.1044/2018_LSHSS-STLT1-17-0134

Hawthorne, K., Mazuka, R., & Gerken, L. (2015). The acoustic salience of prosody trumps infants' acquired knowledge of language-specific prosodic patterns. Journal of Memory and Language, 82, 105–117. https://doi.org/10.1016/j.jml.2015.03.005

Kam, H. C. L. (2018). Mimicking infants' early language experience does not improve adult learning outcomes. Language Learning and Development, 14(1), 13–41. https://doi.org/10.1080/15475441.2017.1324309

Kam, H. C. L., & Newport, E. L. (2005). Regularizing unpredictable variation: The roles of adult and child learners in language formation and change. Language Learning and Development, 1(2), 151–195. https://doi.org/10.1207/s15473341lld0102_3

Inácio, F., Faísca, L., Forkstam, C., Araújo, S., Bramão, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1–14. https://doi.org/10.1007/s11881-018-0158-x

Jamieson, R. K., & Mewhort, D. J. K. (2009). Applying an exemplar model to the artificial-grammar task: Inferring grammaticality from similarity. The Quarterly Journal of Experimental Psychology, 62(3), 550–575.

Jamieson, R. K., & Mewhort, D. J. K. (2010). Applying an exemplar model to the artificial-grammar task: String completion and performance on individual items. The Quarterly Journal of Experimental Psychology, 63(5), 1014–1039.

Johansson, T. (2009). Strengthening the case for stimulus-specificity in artificial grammar learning: No evidence for abstract representations with extended exposure. Experimental Psychology, 56(3), 188–197.

Johnstone, T., & Shanks, D. R. (2000). Abstractionist and processing accounts of implicit learning. Cognitive Psychology, 42(1), 61–112.

Kahta, S., & Schiff, R. (2016). Implicit learning deficits among adults with developmental dyslexia. Annals of Dyslexia, 66(2), 235–250. https://doi.org/10.1007/s11881-016-0121-7

Kahta, S., & Schiff, R. (2019). Deficits in statistical leaning of auditory sequences among adults with dyslexia. Dyslexia, 25(2), 142–157. https://doi.org/10.1002/dys.1618

Kam, C. L. H., & Newport, E. L. (2009). Getting it right by getting it wrong: When learners change languages. Cognitive Psychology, 59(1), 30–66.

Kapatsinski, V. (2013). Conspiring to mean: Experimental and computational evidence for a usage-based harmonic approach to morphophonology. Language, 89(1), 110–148. https://doi.org/10.1353/lan.2013.0003

Katan, P., Kahta, S., Sasson, A., & Schiff, R. (2017). Performance of children with developmental dyslexia on high and low topological entropy artificial grammar learning task. Annals of Dyslexia, 67(2), 163–179. https://doi.org/10.1007/s11881-016-0135-1

Kerkhoff, A., De Bree E., De Klerk, M., Wijnen, F., Bavin, E. L., & Naigles, L. R. (2013). Non-adjacent dependency learning in infants at familial risk of dyslexia. Journal of Child Language, 40(1), 11–28. https://doi.org/10.1017/S0305000912000098

Kersten, A. W., & Earles, J. L. (2001). Less really is more for adults learning a miniature artificial language. Journal of Memory and Language, 44(2), 250–273.

Kinder, A., & Assmann, A. (2000). Learning artificial grammars: No evidence of the acquisition of rules. Memory & Cognition, 28(8), 1321–1332.

Koo, H., & Oh, Y. (2013). Beyond tier-based bigrams: An artificial grammar learning study. Language Sciences, 38, 53–58.

Laasonen, M., Vare, J., Oksanen-Hennah, H., Leppamaki, S., Tani, P., Harno, H., . . . Cleeremans, A. (2014). Project DyAdd: Implicit learning in adult dyslexia and ADHD. Annals of Dyslexia, 64(1), 1–33.

LaCross, A. (2015). Khalkha mongolian speakers' vowel bias: L1 influences on the acquisition of non-adjacent vocalic dependencies. Language, Cognition and Neuroscience, 30(9), 1033–1047. https://doi.org/10.1080/23273798.2014.915976

Lai, J., & Poletiek, F. H. (2013). How "small" is "starting small" for learning hierarchical centre-embedded structures? Journal of Cognitive Psychology, 25(4), 423–435.

Lammertink, I., Merel, V. W., Boersma, P., Wijnen, F., & Rispens, J. (2019). Auditory statistical learning in children: Novel insights from an online measure. Applied Psycholinguistics, 40(2), 279–302. https://doi.org/10.1017/S0142716418000577

Lany, J. (2014). Judging words by their covers and the company they keep: Probabilistic cues support word learning. Child Development, 85(4), 1727–1739.

Lany, J., Shoaib, A., Thompson, A., & Estes, K. G. (2018). Infant statistical-learning ability is related to real-time language processing. Journal of Child Language, 45(2), 368–391. https://doi.org/10.1017/S0305000917000253

Lee, C., & Kurumada, C. (2021). Learning Maximum Absolute Meaning Through Reasoning About Speaker Intentions. Language Learning, 71(2), 326–368.

Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. Journal of Cognitive Neuroscience, 16(3), 427–438.

Liter, A., Heffner, C. C., & Schmitt, C. (2017). The interpretation of plural morphology and (non-)obligatory number marking: An argument from artificial language learning. Language Learning and Development, 13(4), 451–480. https://doi.org/10.1080/15475441.2017.1324307

Lotz, A., & Kinder, A. (2006). Classification and recognition in artificial grammar learning: Analysis of receiver operating characteristics. The Quarterly Journal of Experimental Psychology, 59(4), 667–682.

Lotz, A., & Kinder, A. (2011). Rapid communication: Sex differences in artificial grammar learning: Evidence for different strategies in men and women. The Quarterly Journal of Experimental Psychology, 64(3), 417–424.

Lotz, A., Kinder, A., & Lachnit, H. (2009). Multiple regression analyses in artificial-grammar learning: The importance of control groups. The Quarterly Journal of Experimental Psychology, 62(3), 576–584.

Luka, B. J., & Barsalou, L. W. (2005). Structural facilitation: Mere exposure effects for grammatical acceptability as evidence for syntactic priming in comprehension. Journal of Memory and Language, 52(3), 436–459.

Lukacs, A., & Kemeny, F. (2014). Domain-general sequence learning deficit in specific language impairment. Neuropsychology, 28(3), 472–483.

Maldonado, M., & Culbertson, J. (2021). Nobody Doesn’t Like Negative Concord. Journal of Psycholinguistic Research, 50(6), 1401–1416.

Maie, R., & Dekeyser, R. M. (2020). Conflicting evidence of explicit and implicit knowledge from objective and subjective measures. Studies in Second Language Acquisition, 42(2),

Majerus, S., Martinez Perez, T., & Oberauer, K. (2012). Two distinct origins of long-term learning effects in verbal short-term memory. Journal of Memory and Language, 66(1), 38–51.

Mealor, A. D., & Dienes, Z. (2012). Conscious and unconscious thought in artificial grammar learning. Consciousness and Cognition, 21(2), 865–874.

Mei, L., Xue, G., Lu, Z. L., Chen, C., Zhang, M., He, Q., . . . Dong, Q. (2014). Learning to read words in a new language shapes the neural organization of the prior languages. Neuropsychologia, 65, 156–168.

Merkx, M., Rastle, K., & Davis, M. H. (2011). The acquisition of morphological knowledge investigated through artificial language learning. The Quarterly Journal of Experimental Psychology, 64(6), 1200–1220.

Mersad, K., & Nazzi, T. (2012). When mommy comes to the rescue of statistics: Infants combine top-down and bottom-up cues to segment speech. Language Learning and Development, 8(3), 303.

Monaghan, P., Chater, N., & Christiansen, M. H. (2005). The differential role of phonological and distributional cues in grammatical categorisation. Cognition, 96(2), 143–182.

Morley, R. L. (2018). Is phonological consonant epenthesis possible? A series of artificial grammar learning experiments. Phonology, 35(4), 649–688. https://doi.org/10.1017/S0952675718000234

Mueller, C. M. (2018). Initial acquisition of tense-aspect morphology in an artificial language. Second Language Research, 34(4), 517–538. https://doi.org/10.1177/0267658317750219

Mueller, J. L., Bahlmann, J., & Friederici, A. D. (2010). Learnability of embedded syntactic structures depends on prosodic cues. Cognitive Science, 34(2), 338–349.

Myers, S., & Padgett, J. (2014). Domain generalisation in artificial language learning. Phonology, 31(3), 399–433.

Newell, B. R., & Bright, J. E. H. (2001). The relationship between the structural mere exposure effect and the implicit learning process. The Quarterly Journal of Experimental Psychology, Section A: Human Experimental Psychology, 54(4), 1087–1104.

Norman, E., Price, M. C., & Jones, E. (2011). Measuring strategic control in artificial grammar learning. Consciousness and Cognition, 20(4), 1920–1929.

Odile, B., & Frauenfelder, U. H. (2018). Lexical segmentation in artificial word learning: The effects of converging sublexical cues. Language and Speech, 61(1), 3–30. https://doi.org/10.1177/0023830917694664

Onnis, L., Chun, W. E., & Lou-Magnuson, M. (2018). Improved statistical learning abilities in adult bilinguals. Bilingualism, 21(2), 427–433. https://doi.org/10.1017/S1366728917000529

Onnis, L., Monaghan, P., Richmond, K., & Chater, N. (2005). Phonology impacts segmentation in online speech processing. Journal of Memory and Language, 53(2), 225–237.

Opitz, B., & Hofmann, J. (2015). Concurrence of rule- and similarity-based mechanisms in artificial grammar learning. Cognitive Psychology, 77, 77–99.

Opitz, B., & Kotz, S. A. (2012). Ventral premotor cortex lesions disrupt learning of sequential grammatical structures. Cortex, 48(6), 664–673.

Ordin, M., & Nespor, M. (2016). Native language influence in the segmentation of a novel language. Language Learning and Development, 12(4), 461–481. https://doi.org/10.1080/15475441.2016.1154858

Öttl, B., Jäger, G., & Kaup, B. (2017). The role of simple semantics in the process of artificial grammar learning. Journal of Psycholinguistic Research, 46(5), 1285–1308. https://doi.org/10.1007/s10936-017-9494-y

Paul, J. Z., & Grüter, T. (2016). Blocking effects in the learning of chinese classifiers. Language Learning, 66(4), 972–999. https://doi.org/10.1111/lang.12197

Pavlidou, E. V., Kelly, M. L., & Williams, J. M. (2010). Do children with developmental dyslexia have impairments in implicit learning? Dyslexia, 16(2), 143–161.

Pavlidou, E. V., & Williams, J. M. (2014). Implicit learning and reading: Insights from typical children and children with developmental dyslexia using the artificial grammar learning (AGL) paradigm. Research in Developmental Disabilities, 35(7), 1457–1472.

Pavlidou, E. V., Williams, J. M., & Kelly, L. M. (2009). Artificial grammar learning in primary school children with and without developmental dyslexia. Annals of Dyslexia, 59(1), 55–77.

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203.

Perek, F., & Goldberg, A. E. (2015). Generalizing beyond the input: The functions of the constructions matter. Journal of Memory and Language, 84, 108–127. https://doi.org/10.1016/j.jml.2015.04.006

Perruchet, P., & Poulin-Charronnat, B. (2012). Beyond transitional probability computations: Extracting word-like units when only statistical information is available. Journal of Memory and Language, 66(4), 807–818.

Perruchet, P., & Tillmann, B. (2010). Exploiting multiple sources of information in learning an artificial language: Human data and modeling. Cognitive Science, 34(2), 255–285.

Perruchet, P., Vinter, A., Pacteau, C., & Gallego, J. (2002). The formation of structurally relevant units in artificial grammar learning. The Quarterly Journal of Experimental Psychology, Section A: Human Experimental Psychology, 55(2), 485–503.

Petersson, K., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120(2), 83–95.

Plante, E., Gomez, R., & Gerken, L. (2002). Sensitivity to word order cues by normal and Language/Learning disabled adults. Journal of Communication Disorders, 35(5), 453–462.

Poletiek, F. H. (2002). Implicit learning of a recursive rule in an artificial grammar. Acta Psychologica, 111(3), 323–335.

Poletiek, F. H., & Wolters, G. (2009). What is learned about fragments in artificial grammar learning? A transitional probabilities approach. The Quarterly Journal of Experimental Psychology, 62(5), 868–876.

Pothos, E. M., & Bailey, T. M. (2000). The role of similarity in artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(4), 847–862.

Pothos, E. M., & Kirk, J. (2004). Investigating learning deficits associated with dyslexia. Dyslexia, 10(1), 61–76.

Pothos, E. M., & Wood, R. L. (2009). Separate influences in learning: Evidence from artificial grammar learning with traumatic brain injury patients. Brain Research, 1275, 67–72.

Poznanski, Y., & Tzelgov, J. (2010). Modes of knowledge acquisition and retrieval in artificial grammar learning. The Quarterly Journal of Experimental Psychology, 63(8), 1495–1515.

Prickett, B. (2019). Learning biases in opaque interactions. Phonology, 36(4), 627–653. https://doi.org/10.1017/S0952675719000320

Radulescu, S., Wijnen, F., & Avrutin, S. (2020). Patterns bit by bit. an entropy model for rule induction. Language Learning and Development, 16(2), 109–140. https://doi.org/10.1080/15475441.2019.1695620

Rafferty, A. N., Griffiths, T. L., & Ettlinger, M. (2013). Greater learnability is not sufficient to produce cultural universals. Cognition, 129(1), 70–87.

Reber, R., & Perruchet, P. (2003). The use of control groups in artificial grammar learning. The Quarterly Journal of Experimental Psychology, Section A: Human Experimental Psychology, 56(1), 97–115.

Robinson, P. (2005). Cognitive abilities, chunk-strength, and frequency effects in implicit artificial grammar and incidental L2 learning: Replications of reber, walkenfeld, and hernstadt (1991) and knowlton and squire (1996) and their relevance for SLA. Studies in Second Language Acquisition, 27(2), 235–268.

Rogers, J. (2017). Awareness and learning under incidental learning conditions. Language Awareness, 26(2), 113–133. https://doi.org/10.1080/09658416.2017.1287711

Rogers, J., Révész, A., & Rebuschat, P. (2016). Implicit and explicit knowledge of inflectional morphology. Applied Psycholinguistics, 37(4), 781–812. https://doi.org/10.1017/S0142716415000247

Rohrmeier, M., Rebuschat, P., & Cross, I. (2011). Incidental and online learning of melodic structure. Consciousness and Cognition, 20(2), 214–222.

Romberg, A. R., & Saffran, J. R. (2013). All together now: Concurrent learning of multiple structures in an artificial language. Cognitive Science, 37(7), 1290–1320.

Samara, A., & Caravolas, M. (2017). Artificial grammar learning in dyslexic and nondyslexic adults: Implications for orthographic learning. Scientific Studies of Reading, 21(1), 76–97. https://doi.org/10.1080/10888438.2016.1262865

Schiff, R., Katan, P., Sasson, A., & Kahta, S. (2017). Effect of chunk strength on the performance of children with developmental dyslexia on artificial grammar learning task may be related to complexity. Annals of Dyslexia, 67(2), 180–199. https://doi.org/10.1007/s11881-017-0141-y

Schiff, R., Sasson, A., Star, G., & Kahta, S. (2017). The role of feedback in implicit and explicit artificial grammar learning: A comparison between dyslexic and non-dyslexic adults. Annals of Dyslexia, 67(3), 333–355. https://doi.org/10.1007/s11881-017-0147-5

Schneider, W., Eschman, A. & Zuccolotto, A. 2002. E-Prime: User’s guide. Pittsburgh, PA: Psychology Software Incorporated.

Schuler, K. D., Reeder, P. A., Newport, E. L., & Aslin, R. N. (2017). The effect of zipfian frequency variations on category formation in adult artificial language learning. Language Learning and Development, 13(4), 357–374. https://doi.org/10.1080/15475441.2016.1263571

Scott, R. B., & Dienes, Z. (2008). The conscious, the unconscious, and familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(5), 1264–1288.

Selchenkova, T., Jones, M. R., & Tillmann, B. (2014). The influence of temporal regularities on the implicit learning of pitch structures. The Quarterly Journal of Experimental Psychology, 67(12), 2360–2380.

Smith, J., Siegert, R. J., McDowall, J., & Abernethy, D. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with parkinson's disease. Brain and Cognition, 45(3), 378–391.

St Clair, M.,C., Monaghan, P., & Ramscar, M. (2009). Relationships between language structure and language learning: The suffixing preference and grammatical categorization. Cognitive Science, 33(7), 1317–1329.

Steffler, D. J. (2004). An investigation of grade 5 children's knowledge of the doubling rule in spelling. Journal of Research in Reading, 27(3), 248–264.

Stojanovik, V., Zimmerer, V., Setter, J., Hudson, K., Poyraz-Bilgin, I., & Saddy, D. (2018). Artificial grammar learning in williams syndrome and in typical development: The role of rules, familiarity, and prosodic cues. Applied Psycholinguistics, 39(2), 327–353. https://doi.org/10.1017/S0142716417000212

Taraban, R. (2004). Drawing learners' attention to syntactic context aids gender-like category induction. Journal of Memory and Language, 51(2), 202–216.

Tomoschuk, B., Duyck, W., Hartsuiker, R., Ferreira, V., & Gollan, T. (2021). Language of instruction affects language interference in the third language. Bilingualism: Language and Cognition, 24(4), 707–718.

Trecca, F., McCauley, S. M., Andersen, S. R., Bleses, D., Basbøll, H., Højen, A., . . . Christiansen, M. H. (2019). Segmentation of highly vocalic speech via statistical learning: Initial results from Danish, Norwegian, and English. Language Learning, 69(1), 143–176. https://doi.org/10.1111/lang.12325

Tunney, R. J., & Altmann, G. T. M. (2001). Two modes of transfer in artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(3), 614–639.

Tunney, R. J., & Shanks, D. R. (2003). Subjective measures of awareness and implicit cognition. Memory & Cognition, 31(7), 1060–1071.

Tyler, M. D., & Cutler, A. (2009). Cross-language differences in cue use for speech segmentation. The Journal of the Acoustical Society of America, 126(1), 367–376.

Udden, J., Folia, V., Forkstam, C., Ingvar, M., Fernandez, G., Overeem, S., . . . Petersson, K. M. (2008). The inferior frontal cortex in artificial syntax processing: An rTMS study. Brain Research, 1224(11), 69–78.

Udden, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2012). Implicit acquisition of grammars with crossed and nested non-adjacent dependencies: Investigating the push-down stack model. Cognitive Science, 36(6), 1078–1101.

Vafaee, P., Suzuki, Y., & Kachisnke, I. (2017). Validating grammaticality judgment tests. Studies in Second Language Acquisition, 39(1), 59–95.

van den Bos, E., Christiansen, M. H., & Misyak, J. B. (2012). Statistical learning of probabilistic nonadjacent dependencies by multiple-cue integration. Journal of Memory and Language, 67(4), 507–520.

van den Bos, E., & Poletiek, F. H. (2008). Effects of grammar complexity on artificial grammar learning. Memory & Cognition, 36(6), 1122–1131.

Vokey, J. R., & Higham, P. A. (2005). Abstract analogies and positive transfer in artificial grammar learning. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Experimentale, 59(1), 54–61.

Vuong, L. C., Meyer, A. S., & Christiansen, M. H. (2016). Concurrent statistical learning of adjacent and nonadjacent dependencies. Language Learning, 66(1), 8–30. https://doi.org/10.1111/lang.12137

Weiss, D. J., Gerfen, C., & Mitchel, A. D. (2009). Speech segmentation in a simulated bilingual environment: A challenge for statistical learning? Language Learning and Development, 5(1), 30. https://doi.org/10.1080/15475440802340101

Witt, A., & Vinter, A. (2011). Learning implicitly to produce avoided behaviours. The Quarterly Journal of Experimental Psychology, 64(6), 1173–1186.

Witt, K., Nuhsman, A., & Deuschl, G. (2002). Intact artificial grammar learning in patients with cerebellar degeneration and advanced parkinson's disease. Neuropsychologia, 40(9), 1534–1540.

Wonnacott, E. (2011). Balancing generalization and lexical conservatism: An artificial language study with child learners. Journal of Memory and Language, 65(1), 1–14.

Wonnacott, E., Newport, E. L., & Tanenhaus, M. K. (2008). Acquiring and processing verb argument structure: Distributional learning in a miniature language. Cognitive Psychology, 56(3), 165–209.

Zimmerer, V. C., Cowell, P. E., & Varley, R. A. (2014). Artificial grammar learning in individuals with severe aphasia. Neuropsychologia, 53, 25–38.

Zimmerer, V. C., Cowell, P. E., & Varley, R. A. (2011). Individual behavior in learning of an artificial grammar. Memory & Cognition, 39(3), 491–501.

Zimmerer, V. C., & Varley, R. A. (2015). A case of 'order insensitivity'? natural and artificial language processing in a man with primary progressive aphasia. Cortex, 69, 212–219.

Appendix D. Non-experimental AGL Studies Excluded from the 2000–2022 Search Results

Language learning. (2007). Language Teaching, 40(2), 141–157. https://doi.org/10.1017/S0261444807224280

Bailey, T. M., & Pothos, E. M. (2008). AGL StimSelect: Software for automated selection of stimuli for artificial grammar learning. Behavior Research Methods, 40(1), 164–176.

Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2(10), 406–416.

Cornish, H., Tamariz, M., & Kirby, S. (2009). Complex adaptive systems and the origins of adaptive structure: What experiments can tell us. Language Learning, 59, 187–205.

Culbertson, J., & Smolensky, P. (2012). A bayesian model of biases in artificial language learning: The case of a word-order universal. Cognitive Science, 36(8), 1468–1498.

Dienes, Z. (1992). Connectionist and memory-array models of artificial grammar learning. Cognitive Science, 16(1), 41–79.

Dienes, Z., & Perner, J. (1999). A theory of implicit and explicit knowledge. Behavioral and Brain Sciences, 22(5), 735–808.

Dominey, P. F., Inui, T., & Hoen, M. (2009). Neural network processing of natural language: II. towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing. Brain and Language, 109(2–3), 80–92.

Higham, P. A., & Vokey, J. R. (1994). Recourse to stored exemplars is not necessarily explicit: A comment on knowlton, ramus, and squire (1992). Psychological Science, 5(1), 59–60.

Jamieson, R. K., & Mewhort, D. J. K. (2011). Grammaticality is inferred from global similarity: A reply to kinder (2010). The Quarterly Journal of Experimental Psychology, 64(2), 209–216.

Johnstone, T., & Shanks, D. R. (1999). Two mechanisms in implicit artificial grammar learning? comment on meulemans and van der linden (1997). Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(2), 524–531.

Jones, J. L., & Kaschak, M. P. (2009). Do idiomatic constructions always aid language learning? Language Learning and Development, 5(2), 69. https://doi.org/10.1080/15475440802637100

Kapatsinski, V. (2008). Rethinking rule reliability: Why an exceptionless rule can fail. Papers from the Regional Meetings, Chicago Linguistic Society, 44(2), 277–291.

Kinder, A. (2010). Is grammaticality inferred from global similarity? comment on jamieson and mewhort (2009). The Quarterly Journal of Experimental Psychology, 63(6), 1049–1056.

Kolodny, O., Lotem, A., & Edelman, S. (2015). Learning a generative probabilistic grammar of experience: A process-level model of language acquisition. Cognitive Science, 39(2), 227–267.

Koo, H., & Cole, J. (2007). Gradient perceptual facilitation from phonotactic knowledge. Papers from the Regional Meetings, Chicago Linguistic Society, 43(1), 167–181.

Lobina, D. J. (2011). Recursion and the competence/performance distinction in AGL tasks. Language and Cognitive Processes, 26(10), 1563–1586.

McDonald, J. L. (1997). Language acquisition: The acquisition of linguistic structure in normal and special populations. Annual Review of Psychology, 48, 215–241.

Morgan-Short, K. (2020). Insights into the neural mechanisms of becoming bilingual: A brief synthesis of second language research with artificial linguistic systems. Bilingualism, 23(1), 87–91. https://doi.org/10.1017/S1366728919000701

Mueller, J. L. (2006). L2 in a nutshell: The investigation of second language processing in the miniature language model. Language Learning, 56, 235–270.

Nevins, A. (2009). On formal universals in phonology. Behavioral and Brain Sciences, 32(5), 461–462.

Nevins, A. (2010). Two case studies in phonological universals: A view from artificial grammars. Biolinguistics, 4(2–3), 218–233.

Ou, S., & Guo, Z. (2021). The Language-specific Use of Fundamental Frequency Rise in Segmentation of an Artificial Language: Evidence from Listeners of Taiwanese Southern Min. Language and Speech, 64(2), 437–466.

Perfors, A., Tenenbaum, J. B., & Wonnacott, E. (2010). Variability, negative evidence, and the acquisition of verb argument constructions. Journal of Child Language, 37(3), 607–642. https://doi.org/10.1017/S0305000910000012

Poletiek, F. (2011). What in the world makes recursion so easy to learn? A statistical account of the staged input effect on learning a center-embedded structure in artificial grammar learning (AGL). Biolinguistics, 5(1–2), 36–42.

Pothos, E. M. (2007). Theories of artificial grammar learning. Psychological Bulletin, 133(2), 227–244.

Rebuschat, P., & Williams, J. N. (2012). Implicit and explicit knowledge in second language acquisition. Applied Psycholinguistics, 33(4), 829–856.

Robinson, P. (2010). Implicit artificial grammar and incidental natural second language learning: How comparable are they? Language Learning, 60, 245–263. https://doi.org/10.1111/j.1467-9922.2010.00608.x

Rohrmeier, M. A., & Cross, I. (2014). Modelling unsupervised online-learning of artificial grammars: Linking implicit and statistical learning. Consciousness and Cognition, 27, 155–167.

Tunney, R. J. (2003). Implicit and explicit knowledge decay at different rates: A dissociation between priming and recognition in artificial grammar learning. Experimental Psychology, 50(2), 124–130.

van Trijp, R. (2010). Analogy adapts to the structure of the world. author's reply to 'analogy is an implicit universal semantic map' by michael cysouw (2010b). Linguistic Discovery, 8(1), 329–330.

van Trijp, R. (2010). Grammaticalization and semantic maps: Evidence from artificial language evolution. Linguistic Discovery, 8(1), 310–326.

Wallage, P., & van Gelderen, E. (2010). Cyclical change (linguistik Aktuell/Linguistics today 146). Journal of Linguistics, 46(3), 735–739. https://doi.org/10.1017/S0022226710000277

Watumull, J., Hauser, M. D., & Berwick, R. C. (2014). Conceptual and methodological problems with comparative work on artificial language learning. Biolinguistics, 8, 120–129.

White, J. (2017). Accounting for the learnability of saltation in phonological theory: A maximum entropy model with a P-map bias. Language, 93(1), 1–36. https://doi.org/10.1353/lan.2017.0001

Wong, P. C. M., & Ettlinger, M. (2011). Predictors of spoken language learning. Journal of Communication Disorders, 44(5), 564–567.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TY. ENIGMA: A Web Application for Running Online Artificial Grammar Learning Experiments. J Psycholinguist Res 53, 38 (2024). https://doi.org/10.1007/s10936-024-10078-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10936-024-10078-5

Keywords

Navigation