Skip to main content
Log in

Compound improved Harris hawks optimization for global and engineering optimization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Meta-heuristic algorithms, due to their high search speed and strong generalization ability, are frequently applied in programs mainly to discover the corresponding optimal strategy for any problem in view of their defined rules. After years of collision evolution, they have been continuously used to solve the complex, unordered and diverse optimization problems and improve efficiency. Aiming at the problems of low convergence accuracy and easy to fall into local optima of the traditional Harris hawks optimization algorithm, a compound improved Harris Hawks Optimization algorithm (CIHHO) is proposed. Firstly, the early circling exploration and later attack exploitation phase of the dynamic adjustment algorithm for environmental factors is introduced to regulate the energy of Harris hawks; Secondly, the concept of Versoria function is introduced to modify the random jump strength and raise the data grabbing ability of local space; Introducing the Levy flight function to adjust the factor and reduce the disturbance impact of Levy flight is beneficial for getting rid of the local space after entering the exploitation phase, and introducing random white noise to reduce step size and improve algorithm accuracy. Taking CEC 2017 test function suite set as the core, the performance of CIHHO algorithm is analyzed. Firstly, the performance of CIHHO algorithm is compared with HHO, HHO_JOS, LHHO, LMHHO and NCHHO. Secondly, the performance of unimodal function, multimodal function, mixed function and compound function is compared with other 7 improved algorithms. Finally, ablation experiments are carried out. The convergence value of the iterative curve obtained is more quantitative than the improved algorithm, The generality of the improved CIHHO algorithm in solving multiple optimization problems with different dimensions is verified. Further applying the CIHHO algorithm to three different engineering experiments, the minimum cost calculation results directly demonstrate that the CIHHO algorithm obtained has certain advantages in dealing with search space problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data for this study are available from the corresponding author.

Notes

  1. https://github.com/AndreasGuo/CIHHO.git

References

  1. Li, Y., Li, F.: PSO-based growing echo state network. Appl. Soft Comput. J. 85, 105774 (2019)

    Article  Google Scholar 

  2. Nitin, C., Sagar, S.: Performance analysis of GA, PSO and JA for determining the optimal parameters in friction drilling process. Eng. Sci. Technol. Int. J. 35, 101246 (2022)

    Google Scholar 

  3. Wenyi, D., Juan, M., Wanjun, Y.: Orderly charging strategy of electric vehicle based on improved PSO algorithm. Energy 271, 127088 (2023)

    Article  Google Scholar 

  4. Baoye, S., Zidong, W., Lei, Z.: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. J. 100, 106960 (2021)

    Article  Google Scholar 

  5. Ricardo, C., Rubén, G., Efrén, M.: Spectral richness PSO algorithm for parameter identification of dynamical systems under non-ideal excitation conditions. Appl. Soft Comput. J. 128, 109490 (2022)

    Article  Google Scholar 

  6. Ndunge, I.M., Maina, C.M., Irungu S.K.: Enhancing low voltage ride through capability of grid connected DFIG based WECS using WCA-PSO tuned STATCOM controller. Heliyon 8(8) (2022)

  7. Libin, H., Xinmeng, Y., Ben, W., et al.: An improved ensemble particle swarm optimizer using niching behavior and covariance matrix adapted retreat phase. Swarm Evolut. Comput. 78, 101278 (2023)

    Article  Google Scholar 

  8. Donglin, Z., Zuwei, H., Shikuang, L., et al.: Improved bare bones particle swarm optimization for DNA sequence design. IEEE Trans. Nanobiosci. (2022)

  9. Wentao, M., Lihong, Q., Fengyuan, S., et al.: PV power forecasting based on relevance vector machine with sparrow search algorithm considering seasonal distribution and weather type. Energies 15(14), 5231 (2022)

    Article  Google Scholar 

  10. Chenglong, Z., Shifei, D.: A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 220, 106924 (2021)

    Article  Google Scholar 

  11. Hao, W., Aihua, Z., Ying, H., et al.: Fast stochastic configuration network based on an improved sparrow search algorithm for fire flame recognition. Knowl.-Based Syst. 245, 108626 (2022)

    Article  Google Scholar 

  12. Zhen, Z., Yang, H.: Discrete sparrow search algorithm for symmetric traveling salesman problem. Appl. Soft Comput. J. 118, 108469 (2022)

    Article  Google Scholar 

  13. Jiale, H., Bo, S., Jiankai, X., et al.: A vector-encirclement-model-based sparrow search algorithm for engineering optimization and numerical optimization problems. Appl. Soft Comput. J. 131, 109777 (2022)

    Article  Google Scholar 

  14. Bin, L., Honglei, W.: Multi-objective sparrow search algorithm: A novel algorithm for solving complex multi-objective optimisation problems. Expert Syst. Appl. 210, 118414 (2022)

    Article  Google Scholar 

  15. Li, L.L., Xiong, J.L., Tseng, M.L., et al.: Using multi-objective sparrow search algorithm to establish active distribution network dynamic reconfiguration integrated optimization. Expert Syst. Appl. 193, 116445 (2022). https://doi.org/10.1016/j.eswa.2021.116445

    Article  Google Scholar 

  16. Zhu, D., et al.: Human memory optimization algorithm: a memory-inspired optimizer for global optimization problems. Expert Syst. Appl. 237, 121597 (2023)

    Article  Google Scholar 

  17. Xueliang, Z., Ying, C., Guanghua, W., et al.: A comprehensive compensation method for piezoresistive pressure sensor based on surface fitting and improved grey wolf algorithm. Measurement 207, 112387 (2023)

    Article  Google Scholar 

  18. Zhu, D., Wang, S., Huang, Z., et al.: A JAYA algorithm based on normal clouds for DNA sequence optimization. Clust. Comput. (2023). https://doi.org/10.1007/s10586-023-04083-x

    Article  Google Scholar 

  19. Yujun, Z., Yufei, W., Shuijia, L., Fengjuan, Y., Liuwei, T., Yuxin, Y., Juan, Z., Zhengming, G.: An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models. Math. Biosci. Eng. 19(6), 5610–5637 (2022)

    Article  MathSciNet  Google Scholar 

  20. Jiankai, X., Bo, S.: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J. Supercomput. 79(7), 7305–7336 (2022)

    Google Scholar 

  21. Zhu, D., Wang, S., Zhou, C., et al.: Manta ray foraging optimization based on mechanics game and progressive learning for multiple optimization problems. Appl. Soft Comput. (2023). https://doi.org/10.1016/j.asoc.2023.110561

    Article  Google Scholar 

  22. Xu, J., Li, T., Zhang, D., Wu, J.: Ensemble clustering via fusing global and local structure information. Expert Syst. Appl.121557, ISSN 0957-4174 (2023). https://doi.org/10.1016/j.eswa.2023.121557

  23. Zhu, D., et al.: A multi-strategy particle swarm algorithm with exponential noise and fitness-distance balance method for low-altitude penetration in secure space. J. Comput. Sci. 74, 102149 (2023)

    Article  Google Scholar 

  24. Lei, L., Dong, Z., Fanhua, Y., et al.: Ant colony optimization with Cauchy and greedy Levy mutations for multilevel COVID 19 X-ray image segmentation. Comput. Biol. Med. 136(prepublish), 104609 (2021)

    Google Scholar 

  25. Ming, Z.G., Juan, Z., Rong, Y.H., et al.: The challenge for the nature-inspired global optimization algorithms: non-symmetric benchmark functions. IEEE Access 9, 106317–106339 (2021)

    Article  Google Scholar 

  26. Morteza, P.K., Farshid, K., Amid, B.K.: OWMA: an improved self-regulatory woodpecker mating algorithm using opposition-basedlearning and allocation of local memory for solving optimization problems. J. Intell. Fuzzy Syst. 40(1), 919–946 (2021)

    Article  Google Scholar 

  27. Karimzadeh Parizi, M., Keynia, F., Bardsiri, A.K.: Woodpecker mating algorithm for optimal economic load dispatch in a power system with conventional generators. Int. J. Ind. Electron. Control Optim. 4(2), 221–234 (2021)

    Google Scholar 

  28. Heidari, A.A., Mirjalili, S., Faris, H., et al.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  29. Shangbin, J., Chen, W., Rui, G., et al.: Harris hawks optimization with multi-strategy search and application. Symmetry 13(12), 2364 (2021)

    Article  Google Scholar 

  30. Helei, K., Renyun, L., Yifei, Y., et al.: Improved Harris hawks optimization for non-convex function optimization and design optimization problems. Math. Comput. Simul 204, 619–639 (2023)

    Article  MathSciNet  Google Scholar 

  31. Gupta, S., Deep, K., Heidari, A.A., et al.: Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis. Expert Syst. Appl. 158(prepublish), 113510 (2020)

    Article  Google Scholar 

  32. Lemin, P., Zhennao, C., Ali, H.A., et al.: Hierarchical Harris hawks optimizer for feature selection. J. Adv. Res. 53, 261–278 (2023)

    Article  Google Scholar 

  33. Gharehchopogh, S.F., Abdollahzadeh, B.: An efficient harris hawk optimization algorithm for solving the travelling salesman problem. Clust. Comput. 25(3), 1981–2005 (2021)

    Article  Google Scholar 

  34. Pradeep, J., Asghar, A.H., Huiling, C.: Elitist non-dominated sorting Harris hawks optimization: framework and developments for multi-objective problems. Expert Syst. Appl. 186, 115747 (2021)

    Article  Google Scholar 

  35. Jafar, A.J., Amine, E.M.S.B., Sima, O., et al.: Reliability analysis based improved directional simulation using Harris hawks optimization algorithm for engineering systems. Eng. Fail. Anal. 135(prepublish), 106148 (2022)

    Article  Google Scholar 

  36. Mohamed, Z.E., Mohd, B.N.Y., Mohammad, T., et al.: An improved Harris hawks optimization algorithm with simulated annealing for feature selection in the medical field. IEEE Access 8, 186638–186652 (2020)

    Article  Google Scholar 

  37. Kashif, H., Nabil, N., William, Z., et al.: An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection. Expert Syst. Appl. 176, 114778 (2021)

    Article  Google Scholar 

  38. Fahmy, H., El-Gendy, E.M., Mohamed, M.A., et al.: ECH3OA: an enhanced chimp-Harris hawks optimization algorithm for copyright protection in color images using watermarking techniques. Knowl.-Based Syst. 269, 110494 (2023)

    Article  Google Scholar 

  39. Xuxu, Z., Zhisheng, Y., Peng, C.: A hybrid optimization algorithm and its application in flight trajectory prediction. Expert Syst. Appl. 213, 119082 (2023)

    Article  Google Scholar 

  40. Ines, L., Aida, Z., Mohamed, Y., et al.: A novel improved binary Harris hawks optimization for high dimensionality feature selection. Pattern Recogn. Lett. 171, 170–176 (2023)

    Article  Google Scholar 

  41. Balaha, H.M., El-Gendy, E.M., Saafan, M.M.: CovH2SD: a COVID-19 detection approach based on Harris hawks Optimization and stacked deep learning. Expert Syst. Appl. 186, 115805 (2021)

    Article  Google Scholar 

  42. Hamed, A., Mohamed, M.F.: A feature selection framework for anxiety disorder analysis using a novel multiview harris hawk optimization algorithm[J]. Artif. Intell. Med. 143, 102605 (2023)

    Article  Google Scholar 

  43. Vineet, K., Veena, S., Ram, N.: Leader Harris hawks algorithm based optimal controller for automatic generation control in PV-hydro-wind integrated power network. Electric Power Syst. Res. 214, 108924 (2023)

    Article  Google Scholar 

  44. Kumar, A.P., Kumar, V.J., Jayalakshmi, N.: Real-time and day-ahead risk averse multi-objective operational scheduling of virtual power plant using modified Harris Hawk’s optimization. Electric Power Syst. Res. 220, 109285 (2023)

    Article  Google Scholar 

  45. ÇetınbaŞ, İ, Tamyürek, B., Demırtaş, M.: The hybrid Harris hawks optimizer-arithmetic optimization algorithm: a new hybrid algorithm for sizing optimization and design of microgrids. IEEE Access 10, 19254–19283 (2022). https://doi.org/10.1109/ACCESS.2022.3151119

    Article  Google Scholar 

  46. Kumar, A., Dhillon, J.S.: Enhanced Harris hawk optimizer for hydrothermal generation scheduling with cascaded reservoirs. Expert Syst. Appl. 226, 120270 (2023)

    Article  Google Scholar 

  47. Shiming, S., Pengjun, W., Asghar, A.H., et al.: Adaptive Harris hawks optimization with persistent trigonometric differences for photovoltaic model parameter extraction. Eng. Appl. Artif. Intell. 109, 104608 (2022)

    Article  Google Scholar 

  48. Jiao, S., Chong, G., Huang, C., et al.: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy 203, 117804 (2020)

    Article  Google Scholar 

  49. Hassan, B., Muhammad, S., Özge, H., et al.: Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention. Energy 278, 127933 (2023)

    Article  Google Scholar 

  50. Ayşe, B., İdiris, D.: A new binary variant with transfer functions of Harris hawks optimization for binary wind turbine micrositing. Energy Rep. 6(S9), 668–673 (2020)

    Google Scholar 

  51. Mingliang, L., Kegang, L., Qingci, Q.: A rockburst prediction model based on extreme learning machine with improved Harris hawks optimization and its application. Tunn. Underground Space Technol. Inc. Trenchless Technol. Res. 134, 104978 (2023)

    Article  Google Scholar 

  52. Mashaleh, A.S., Ibrahim, N.F., Al-Betar, M.A., et al.: Detecting spam email with machine learning optimized with Harris hawks optimizer (HHO) algorithm. Procedia Comput. Sci. 201, 659–664 (2022)

    Article  Google Scholar 

  53. Kamboj, K.V., Nandi, A., Bhadoria, A., et al.: An intensify Harris hawks optimizer for numerical and engineering optimization problems. Appl. Soft Comput. J. 89, 106018 (2020)

    Article  Google Scholar 

  54. İlker, G., Burcin, F.O.: Quantum particles-enhanced multiple Harris hawks swarms for dynamic optimization problems. Expert Syst. Appl. 16(prepublish), 114202 (2020)

    Google Scholar 

  55. Sandeep, S., Abinash, S., Deba, S.P.: Improving accuracy of SVM for monthly sediment load prediction using Harris hawks optimization. Mater. Today: Proc. 61, 604–617 (2022)

    Google Scholar 

  56. Yankai, W., Shilong, W., Wenhan, Y., et al.: A digital-twin-based adaptive multi-objective Harris hawks Optimizer for dynamic hybrid flow green scheduling problem with dynamic events. Appl. Soft Comput. J. 143, 110274 (2023)

    Article  Google Scholar 

  57. Sangeetha, J., Kumaran, U.: A hybrid optimization algorithm using BiLSTM structure for sentiment analysis. Meas.: Sens. 25, 100619 (2023)

    Google Scholar 

  58. Alamir, M.A.: An enhanced artificial neural network model using the Harris hawks optimiser for predicting food liking in the presence of background noise. Appl. Acoust. 178, 108022 (2021)

    Article  Google Scholar 

  59. Awad, N.H., Ali, M.Z., Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization, technical report, Nanyang Technological University (2016)

  60. Yuni, F.A., Sirapat, C., Chitsutha, S., et al.: Joint opposite selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems. Expert Syst. Appl. 188, 116001 (2022)

    Article  Google Scholar 

  61. Hussain, K., Zhu, W., Salleh, M.N.M.: Long-term memory Harris’ Hawk optimization for high dimensional and optimal power flow problems. IEEE Access 7, 147596–147616 (2019)

    Article  Google Scholar 

  62. Abdollahi, A.D., Safaa, A.S., Seyedali, M., et al.: Nonlinear-based Chaotic Harris hawks optimizer: algorithm and internet of vehicles application. Appl. Soft Comput. J. 109, 107574 (2021)

    Article  Google Scholar 

  63. Devan, P.A.M., Hussin, F.A., Ibrahim, R.B., Bingi, K., Nagarajapandian, M., Assaad, M.: An arithmetic-trigonometric optimization algorithm with application for control of real-time pressure process plant. Sensors 22, 617 (2022)

    Article  Google Scholar 

  64. Khodadadi, N., Snasel, V., Mirjalili, S.: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints. IEEE Access 10, 16188–16208 (2022)

    Article  Google Scholar 

  65. Priyadarshi, N., Bhaskar, M.S., Almakhles, D.: A novel hybrid whale optimization algorithm differential evolution algorithm-based maximum power point tracking employed wind energy conversion systems for water pumping applications: practical realization. IEEE Trans. Ind. Electron. 71(2), 1641–1652 (2024)

    Article  Google Scholar 

  66. Ahmed, R., Rangaiah, G.P., Mahadzir, S., Mirjalili, S., Hassan, M.H., Kamel, S.: Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique. Knowl.-Based Syst. 264, 110297 (2023)

    Article  Google Scholar 

  67. Refaat, M.M., Aleem Shady, H.E.A., Atia, Y., Ali, Z.M., Sayed, M.M.: Multi-stage dynamic transmission network expansion planning using LSHADE-SPACMA. Appl. Sci. 11(5), 2155 (2021)

    Article  Google Scholar 

  68. Fathy, A., AbdelAleem, S.H.E., Rezk, H.: A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm. Int. J. Energy Res. 45(5), 6922–6942 (2020)

    Article  Google Scholar 

  69. Nitish, C., Muhammad, A.M.: Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 198, 116924 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 62272418, 62102058), Basic public welfare research program of Zhejiang Province (No. LGG18E050011).

Funding

Funding were provided National Natural Science Foundation of China (Grant Nos. 62272418, 62102058) and Basic public welfare research program of Zhejiang Province (No. LGG18E050011).

Author information

Authors and Affiliations

Authors

Contributions

C.O.: Conceptualization, Methodology, Data curation, Writing- Original draft preparation Funding acquisition. C.L.: Conceptualization, Methodology, Software, Data curation, Writing- Original draft preparation.D.Z. : Visualization, Investigation. Y.Z.: Software, Methodology. C.Z.: Conceptualization,Supervision, Funding acquisition. C.Z.:Supervision, Visualization. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changjun Zhou or Chengye Zou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Tables 7, 8, 9 and 10.

See Figs. 10, 11 and 12.

Appendix 2

Consider:

$${{\text{X}}}_{{\text{s}}}=[{{\text{x}}}_{\mathrm{0,1}},{{\text{x}}}_{\mathrm{0,2}},{{\text{x}}}_{\mathrm{0,3}},{{\text{x}}}_{\mathrm{0,4}}]=[{\text{H}},{\text{L}},{\text{T}},{\text{B}}]$$

Minimize:

$${\text{F}}=1.10471{{\text{x}}}_{\mathrm{0,1}}^{2}{{\text{x}}}_{\mathrm{0,2}}+0.04811{{\text{x}}}_{\mathrm{0,3}}{{\text{x}}}_{\mathrm{0,4}}(14.0+{{\text{x}}}_{\mathrm{0,2}})$$

Subject to:

$$\begin{gathered} g_{1} \left( x \right) = - \tau \left( {{\text{X}}_{{\text{s}}} } \right) + {\uptau }_{{{\text{max}}}} \le 0;\,g_{2} \left( x \right) = \sigma \left( {{\text{X}}_{{\text{s}}} } \right) - {\upsigma }_{{{\text{max}}}} \le 0;\,g_{3} \left( x \right) = - \delta \left( {{\text{X}}_{{\text{s}}} } \right) + {\updelta }_{{{\text{max}}}} \le 0; \hfill \\ g_{4} \left( x \right) = {\text{x}}_{0,1} - {\text{x}}_{0,4} \le 0;\,g_{5} \left( x \right) = P - {\text{P}}_{{\text{c}}} \left( {{\text{X}}_{{\text{s}}} } \right) \le 0;\,g_{6} \left( x \right) = 0.125 - {\text{x}}_{0,1} \le 0 \hfill \\ g_{7} \left( x \right) = 1.10471{\text{x}}_{0,1}^{2} + 0.04811{\text{x}}_{0,3} {\text{x}}_{0,4} \left( {14.0 + {\text{x}}_{0,2} } \right) - 5.0 \le 0;\,g_{4} \left( x \right) = {\text{x}}_{0,4} - 240 \le 0 \hfill \\ \end{gathered}$$

Where:

$$\tau \left( {{\text{X}}_{{\text{s}}} } \right) = \sqrt {\left( {\tau^{\prime}} \right)^{2} + 2\tau^{\prime}\tau^{\prime\prime}\frac{{x_{0,2} }}{2R} + \left( {\tau^{\prime\prime}} \right)^{2} } ;\,\,\tau^{\prime} = \frac{P}{{\sqrt 2 x_{0,1} x_{0,2} }};\,\,\tau^{\prime\prime} = \frac{MR}{J}$$
$$M = P\left( {L + \frac{{x_{0,2} }}{2}} \right);\,R = \sqrt {\frac{{x_{0,2}^{2} }}{4} + \left( {\frac{{x_{0,1} + x_{0,3} }}{2}} \right)^{2} } ;\,J = 2\left\{ {\sqrt 2 x_{0,1} x_{0,2} \left[ {\frac{{x_{0,2}^{2} }}{4} + \left( {\frac{{x_{0,1} + x_{0,3} }}{2}} \right)^{2} } \right]} \right\}$$
$$\sigma \left( X \right) = \frac{{6PL_{s} }}{{{\text{x}}_{0,4} {\text{x}}_{0,3}^{2} }};\,\delta \left( X \right) = \frac{{6PL_{s}^{3} }}{{E{\text{x}}_{0,2}^{2} {\text{x}}_{0,4} }}$$
$${\text{ P}}_{{\text{c}}} \left( {\text{X}} \right) = \frac{{4.013E\frac{{\sqrt {x_{0,3}^{2} x_{0,4}^{6} } }}{36}}}{{L^{2} }}\left( {1 - \frac{{x_{0,3} }}{{2L_{s} }}\sqrt{\frac{E}{4G}} } \right)$$

P = 6000LB; \({L}_{s}=14\); \({\text{E}}=30\times {1}^{6}\mathrm{ psi}\)

$${\text{G}}=12\times {1}^{6}\mathrm{ psi }; {\delta }_{max}=0.25 ; {\tau }_{max}=13600 psi ; {\sigma }_{max}=3000 psi$$

With bounds:

0.1 ≤ \({{\text{x}}}_{\mathrm{0,1}}\),\({{\text{x}}}_{\mathrm{0,4}}\)≤2,0.1 ≤ \({{\text{x}}}_{\mathrm{0,2}}\),\({{\text{x}}}_{\mathrm{0,3}}\)≤10.

Appendix 3

Consider:

$${{\text{X}}}_{{\text{s}}}=[{{\text{x}}}_{\mathrm{1,1}},{{\text{x}}}_{\mathrm{1,2}},{{\text{x}}}_{\mathrm{1,3}},{{\text{x}}}_{\mathrm{1,4}}]=[{{\text{T}}}_{{\text{S}}},{{\text{T}}}_{{\text{h}}},{\text{R}},{\text{L}}]$$

Minimize:

$${\text{F}}={0.6224{\text{x}}}_{\mathrm{1,1}}{{\text{x}}}_{\mathrm{1,3}}{{\text{x}}}_{\mathrm{1,4}}+1.788{{\text{x}}}_{\mathrm{1,2}}{{\text{x}}}_{\mathrm{1,3}}^{2}+3.1661{{\text{x}}}_{\mathrm{1,1}}^{2}{{\text{x}}}_{\mathrm{1,4}}+19.84{{\text{x}}}_{\mathrm{1,1}}^{2}{{\text{x}}}_{\mathrm{1,3}}$$

Subject to:

$${g}_{1}(x)=-{{\text{x}}}_{\mathrm{1,1}}+0.0193{{\text{x}}}_{\mathrm{1,3}}\le 0$$
$${g}_{2}(x)=-{{\text{x}}}_{\mathrm{1,2}}+0.0954{{\text{x}}}_{\mathrm{1,3}}\le 0$$
$${g}_{3}(x)=-\uppi {{\text{x}}}_{\mathrm{1,3}}^{2}{{\text{x}}}_{\mathrm{1,4}}+\frac{4}{3}\uppi {{\text{x}}}_{\mathrm{1,3}}^{3}+1296000\le 0$$
$${g}_{4}(x)={{\text{x}}}_{\mathrm{1,4}}-240\le 0$$

With bounds:

0 ≤ \({{\text{x}}}_{\mathrm{1,1}}\),\({{\text{x}}}_{\mathrm{1,2}}\)≤ 100,10 ≤  \({{\text{x}}}_{\mathrm{1,3}}\), \({{\text{x}}}_{\mathrm{1,4}}\)≤ 200.

Appendix 4

Consider:

$${{\text{X}}}_{{\text{s}}}=[{{\text{x}}}_{\mathrm{2,1}},{{\text{x}}}_{\mathrm{2,2}}]=[{{\text{A}}}_{1},{{\text{A}}}_{2}]$$

Minimize:

$${\text{F}}={{\text{l}}({\text{x}}}_{\mathrm{2,2}}+2\sqrt{2}{{\text{x}}}_{\mathrm{2,1}})$$

Subject to:

$${g}_{1}(x)=\frac{{{\text{x}}}_{\mathrm{2,2}}}{{2{\text{x}}}_{\mathrm{2,1}}{{\text{x}}}_{\mathrm{2,2}}+2\sqrt{2}{{\text{x}}}_{\mathrm{2,1}}^{2}}{\text{P}}-\upsigma \le 0$$
$${g}_{2}(x)=\frac{{{\text{x}}}_{\mathrm{2,2}}+\sqrt{2}{{\text{x}}}_{\mathrm{2,1}}}{2{{\text{x}}}_{\mathrm{2,1}}{{\text{x}}}_{\mathrm{2,2}}+2\sqrt{2}{{\text{x}}}_{\mathrm{2,1}}^{2}}{\text{P}}-\upsigma \le 0$$
$${g}_{3}(x)=\frac{1}{{{\text{x}}}_{\mathrm{2,1}}+2\sqrt{2}{{\text{x}}}_{\mathrm{2,2}}}{\text{P}}-\upsigma \le 0$$

where:

$${\text{l}}=100,{\text{P}}=2,\upsigma =2$$

With bounds:

0 ≤ \({{\text{x}}}_{\mathrm{2,1}}\),\({{\text{x}}}_{\mathrm{2,2}}\)≤100.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, C., Liao, C., Zhu, D. et al. Compound improved Harris hawks optimization for global and engineering optimization. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04348-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04348-z

Keywords

Navigation