Skip to main content
Log in

In-situ study of the effect of grain boundary misorientation on plastic deformation of Inconel 718 at high temperature

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the grain boundary (GB) misorientation on plastic deformation of Inconel 718 (IN718) alloy was investigated in this paper, using in-situ tensile experiment at 650 °C in combination with crystal plasticity finite element method (CPFEM). The results indicate that dislocations tend to accumulate at GBs to form stress concentration, but the degree of stress concentration does not necessarily increase with the increase of the GB misorientation. It is attributed to the slip transfer at the GBs, determined by the angle between the slip systems of the two adjacent grains. There is a significant uncertainty in the slip transfer for GB misorientation larger than 10°. However, the \(m_{{{\alpha \beta }}}^{\prime} \left( {{\text{SF}}_{\alpha } + {\text{SF}}_\beta } \right)\) criterion, which is a function of the Luster and Morris \(m_{{{\alpha \beta }}}^{\prime}\) combining the Schmid factors of the two slip systems with the GB misorientation, has some statistical separation significance. Slip transfer tends to appear at GB misorientation less than 30° and \(m_{{{\alpha \beta }}}^{\prime} \left( {{\text{SF}}_{\alpha } + {\text{SF}}_\beta } \right) > 0.78\). This study clarifies the mechanism of the influence of GB misorientation on IN718 microplastic deformation and provides a new strategy to study the deformation behavior of superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure  6
Figure 7
Figure  8
Figure  9
Figure  10
Figure  11

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gao WJ, Lu JX, Zhou JL, Liu LE, Wang J, Zhang YF, Zhang Z (2022) Effect of grain size on deformation and fracture of Inconel718: An in-situ SEM-EBSD-DIC investigation. Mater Sci Eng A 861:144361. https://doi.org/10.1016/j.msea.2022.144361

    Article  CAS  Google Scholar 

  2. Alqawasmi L, Bijjala ST, Khraishi T, Kumar P (2023) Mechanical property heterogeneity in Inconel 718 superalloy manufactured by directed energy deposition. J Mater Sci. https://doi.org/10.1007/s10853-023-09249-x

    Article  Google Scholar 

  3. Lyu H, Ruimi A (2023) Synergetic effect of initial shear texture and grain size gradient on plastic deformation of gradient interstitial free (IF) steel. J Mater Sci. https://doi.org/10.1007/s10853-023-09045-7

    Article  Google Scholar 

  4. Kheradmand N, Knorr AF, Marx M, Deng Y (2016) Microscopic incompatibility controlling plastic deformation of bicrystals. Acta Mater 106:219–228. https://doi.org/10.1016/j.actamat.2016.01.006

    Article  CAS  Google Scholar 

  5. Kobayashi S, Terakado M, Ebata K, Tsutsui H, Yamamuro T, Tsurekawa S (2023) Low-angle grain boundary engineering based on texture control for enhancement of corrosion and fatigue resistance in 436L type ferritic stainless steel. J Mater Sci. https://doi.org/10.1007/s10853-023-09227-3

    Article  Google Scholar 

  6. Demir E, Gutierrez-Urrutia I (2021) Investigation of strain hardening near grain boundaries of an aluminum oligocrystal: Experiments and crystal based finite element method. Int J Plast 136:102898. https://doi.org/10.1016/j.ijplas.2020.102898

    Article  CAS  Google Scholar 

  7. Zhou H, Wang P, Lu S (2021) Investigation on the effects of grain boundary on deformation behavior of bicrystalline pillar by crystal plasticity finite element method. Crystals 11:923. https://doi.org/10.3390/cryst11080923

    Article  CAS  Google Scholar 

  8. Sperry R, Harte A, da Fonseca JQ, Homer ER, Wagoner RH, Fullwood DT (2020) Slip band characteristics in the presence of grain boundaries in nickel-based superalloy. Acta Mater 193:229–238. https://doi.org/10.1016/j.actamat.2020.04.037

    Article  CAS  Google Scholar 

  9. Pai NM, Prakash A, Samajdar I, Patra A (2022) Study of grain boundary orientation gradients through combined experiments and strain gradient crystal plasticity modeling. Int J Plast 156:103360. https://doi.org/10.1016/j.ijplas.2022.103360

    Article  CAS  Google Scholar 

  10. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64:747. https://doi.org/10.1088/0370-1301/64/6/305

    Article  Google Scholar 

  11. Kedharnath A, Kapoor R, Sarkar A (2023) Dislocation–grain boundary interactions in Ta: numerical, molecular dynamics, and machine learning approaches. J Mater Sci. https://doi.org/10.1007/s10853-023-09167-y

    Article  Google Scholar 

  12. Luster J, Morris MA (1995) Compatibility of deformation in two-phase Ti-Al alloys: dependence on microstructure and orientation relationships. Metall Mater Trans A 26:1745–1756. https://doi.org/10.1007/BF02670762

    Article  Google Scholar 

  13. Malyar NV, Dehm G, Kirchlechner C (2017) Strain rate dependence of the slip transfer through a penetrable high angle grain boundary in copper. Scripta Mater 138:88–91. https://doi.org/10.1016/j.scriptamat.2017.05.042

    Article  CAS  Google Scholar 

  14. Weaver JS, Li N, Mara NA, Jones DR, Cho H, Bronkhorst CA, Fensin SJ, Gray GT III (2018) Slip transmission of high angle grain boundaries in body-centered cubic metals: micropillar compression of pure Ta single and bi-crystals. Acta Mater 156:356–368. https://doi.org/10.1016/j.actamat.2018.06.046

    Article  CAS  Google Scholar 

  15. Heller M, Gibson JSK-L, Pei R, Korte-Kerzel S (2020) Deformation of µm-and mm-sized Fe2.4wt% Si single-and bi-crystals with a high angle grain boundary at room temperature. Acta Mater 194:452–463. https://doi.org/10.1016/j.actamat.2020.04.011

    Article  CAS  Google Scholar 

  16. Rizwan M, Lu JX, Ullah R, Zhang YF, Zhang Z (2022) Microstructural and texture evolution investigation of laser melting deposited TA15 alloy at 500 ℃ using in-situ EBSD tensile test. Mater Sci Eng A 857:144062. https://doi.org/10.1016/j.msea.2022.144062

    Article  CAS  Google Scholar 

  17. Cai W, Sun CY, Wang CH, Qian LY, Li YM, Fu MW (2022) Modelling of the intergranular fracture of TWIP steels working at high temperature by using CZM–CPFE method. Int J Plast 156:103366. https://doi.org/10.1016/j.ijplas.2022.103366

    Article  CAS  Google Scholar 

  18. Lu JX, Chang L, Wang J, Sang LJ, Wu SK, Zhang YF (2018) In-situ investigation of the anisotropic mechanical properties of laser direct metal deposition Ti6Al4V alloy. Mater Sci Eng A 712:199–205. https://doi.org/10.1016/j.msea.2017.11.106

    Article  CAS  Google Scholar 

  19. Wang J, Lu JX, You XX, Ullah R, Sang LJ, Chang L, Zhang YF, Zhang Z (2019) In-situ comparison of deformation behavior at 23 ℃ and 650 ℃ of laser direct melting deposited Ti-6Al-4V alloy. Mater Sci Eng A 749:48–55. https://doi.org/10.1016/j.msea.2019.01.111

    Article  CAS  Google Scholar 

  20. Chen JT, Lu JX, Cai W, Zhang YF, Wang YF, Jiang WX, Rizwan M, Zhang Z (2023) In-situ study of adjacent grains slip transfer of Inconel 718 during tensile process at high temperature. Int J Plast 163:103554. https://doi.org/10.1016/j.ijplas.2023.103554

    Article  CAS  Google Scholar 

  21. He WL, Lu JX, Li FQ, Jiang WX, Wang J, Zhang YF, Zhang Z (2022) In situ SEM study of creep deformation behavior of nickel-based single-crystal superalloys. J Mater Sci 57:13647–13659. https://doi.org/10.1007/s10853-022-07397-0

    Article  CAS  Google Scholar 

  22. Sang LJ, Lu JX, Wang J, Ullah R, Sun XC, Zhang YF, Zhang Z (2021) In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy. J Mater Sci 56:16097–16112. https://doi.org/10.1007/s10853-021-06256-8

    Article  CAS  Google Scholar 

  23. Blum W, Eisenlohr P (2009) Dislocation mechanics of creep. Mater Sci Eng A 510:7–13. https://doi.org/10.1016/j.msea.2008.04.110

    Article  CAS  Google Scholar 

  24. Kubin L, Devincre B, Hoc T (2008) Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater 56:6040–6049. https://doi.org/10.1016/j.actamat.2008.08.012

    Article  CAS  Google Scholar 

  25. Zhang WJ, Lu JX, Wang J, Sang LJ, Ma JY, Zhang YF, Zhang Z (2020) In-situ EBSD study of deformation behavior of Inconel 740H alloy at high-temperature tensile loading. J Alloy Compd 820:153424. https://doi.org/10.1016/j.jallcom.2019.153424

    Article  CAS  Google Scholar 

  26. Saravanan K, Sharma VMJ, Ramesh Narayanan P, Sharma SC, Koshy MG (2015) On the measurement of dynamic elastic and internal friction properties of nickel based super alloys up to 650 ℃ temperature. Mater Sci Forum 830–831:203–206. https://doi.org/10.4028/www.scientific.net/MSF.830-831.203

    Article  Google Scholar 

  27. Reuber C, Eisenlohr P, Roters F, Raabe D (2014) Dislocation density distribution around an indent in single-crystalline nickel: comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Mater 71:333–348. https://doi.org/10.1016/j.actamat.2014.03.012

    Article  CAS  Google Scholar 

  28. Cordero B, Gómez V, Platero-Prats AE, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S (2008) Covalent radii revisited. Dalton T. https://doi.org/10.1039/B801115J

    Article  Google Scholar 

  29. Jia N, Roters F, Eisenlohr P, Kords C, Raabe D (2012) Non-crystallographic shear banding in crystal plasticity FEM simulations: example of texture evolution in α-brass. Acta Mater 60:1099–1115. https://doi.org/10.1016/j.actamat.2011.10.047

    Article  CAS  Google Scholar 

  30. Zhang C, Zhang L-W, Shen W-F, Xia Y-N, Yan Y-T (2017) 3D crystal plasticity finite element modeling of the tensile deformation of polycrystalline ferritic stainless steel. Acta Metall Sin-Engl 30:79–88. https://doi.org/10.1007/s40195-016-0488-9

    Article  CAS  Google Scholar 

  31. Guo Y, Collins DM, Tarleton E, Hofmann F, Wilkinson AJ, Ben Britton T (2020) Dislocation density distribution at slip band-grain boundary intersections. Acta Mater 182:172–183. https://doi.org/10.1016/j.actamat.2019.10.031

    Article  CAS  Google Scholar 

  32. Taylor GI (1938) Plastic strain in metals. J Inst Metals 62:307–324

    Google Scholar 

  33. Zaefferer S, Kuo J-C, Zhao Z, Winning M, Raabe D (2003) On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater 51:4719–4735. https://doi.org/10.1016/S1359-6454(03)00259-3

    Article  CAS  Google Scholar 

  34. Zhou BJ, Li YJ, Wang LY, Jia HL, Zeng XQ (2022) The role of grain boundary plane in slip transfer during deformation of magnesium alloys. Acta Mater 227:117662. https://doi.org/10.1016/j.actamat.2022.117662

    Article  CAS  Google Scholar 

  35. Mayeur JR, Beyerlein IJ, Bronkhorst CA, Mourad HM (2015) Incorporating interface affected zones into crystal plasticity. Int J Plast 65:206–225. https://doi.org/10.1016/j.ijplas.2014.08.013

    Article  CAS  Google Scholar 

  36. Tiba I, Richeton T, Motz C, Vehoff H, Berbenni S (2015) Incompatibility stresses at grain boundaries in Ni bicrystalline micropillars analyzed by an anisotropic model and slip activity. Acta Mater 83:227–238. https://doi.org/10.1016/j.actamat.2014.09.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Beijing Natural Science Foundation (2232042), Basic Science Center Program for Multiphase Media Evolution in Hypergravity of the National Natural Science Foundation of China (No. 51988101), and Key projects of Beijing Natural Science Foundation (Kz202110005006).

Author information

Authors and Affiliations

Authors

Contributions

Jutian Chen performed investigation, data curation, and writing—original draft preparation. Junxia Lu prepared writing—reviewing and editing. Xiaopeng Cheng approved conceptualization and supervision. Yuefei Zhang provided methodology. Ze Zhang did methodology and Supervision.

Corresponding authors

Correspondence to Junxia Lu or Yuefei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4239 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Lu, J., Cheng, X. et al. In-situ study of the effect of grain boundary misorientation on plastic deformation of Inconel 718 at high temperature. J Mater Sci 59, 7473–7488 (2024). https://doi.org/10.1007/s10853-024-09627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09627-z

Navigation