当前位置: X-MOL首页全球导师 国内导师 › 李花兵

个人简介

学习经历: 1998.09 - 2002.07 攻读东北大学冶金科学与工程专业学士学位; 2002.09 - 2004.07 攻读东北大学钢铁冶金专业硕士学位; 2004.03 - 2008.03 攻读东北大学钢铁冶金专业博士学位。 工作经历: 2005.03 - 2008.02,东北大学材料与冶金学院,钢铁冶金研究所,助教; 2008.03 - 2009.12,东北大学材料与冶金学院,钢铁冶金研究所,讲师; 2012.07 - 2016.12,山西太钢不锈钢股份有限公司,在职博士后; 2010.01 - 2016.12,东北大学材料与冶金学院,钢铁冶金研究所,副教授; 2017.01 - 至今,东北大学冶金学院,特殊钢冶金研究所,教授; 2018.07 - 至今,东北大学冶金学院,特殊钢冶金研究所,博士生导师。 近年讲授课程:《特殊钢材料学及冶金原理》、《直读光谱分析》、《腐蚀电化学原理及测试技术》、《感应炉炼钢》等课程 所在团队情况:特殊钢冶金研究所(姜周华教授团队) 人才培养情况: (1)培养和协助培养本科生26人(独立指导16人);培养和协助培养硕士研究生51人(独立指导30);培养和协助培养博士研究生18人(独立指导3人); (2)指导学生在首届中国金属学会“冶金青年创新创意大赛”等科技创新/创业大赛中获奖5 项(全国特等奖1项,二等奖2项,三等奖1项;省特等奖1项)。 科研项目情况: 长期致力于高品质特殊钢冶炼工艺及新品种开发方面的教学和科研工作,主持重点基金,十三五重点研发计划子课题、863子课题,国家自然基金等20余项,经费累计1500余万元。围绕高品质高氮不锈钢制备技术及品种开发,突破了常压下高纯净护环钢(氮含量0.65%以上)工业化稳定生产的技术瓶颈,实现了600MW以上大容量超超临界火电和核电机组用护环国产化,打破了德国和日本30多年技术封锁和市场垄断;首次研发了加压冶炼关键装备,攻克了加压冶金制备关键技术;阐明了氮在冶炼、凝固和材料中的行为,明晰了加压强化冷却和改善凝固组织机理,丰富和发展了加压冶金理论,研发了新一代航空高氮不锈轴承钢等系列高氮不锈钢新品种。围绕高性能不锈钢,突破了资源节约型、热核聚变实验堆用和超级等系列不锈钢制备关键科学和技术难题,实现批量稳定化生产,实物质量达到国际先进水平,满足了我国高端装备制造业材料急需。 代表性项目: (1)国家自然科学基金钢铁联合基金重点项目,基于加压感应和加压电渣双联工艺制备高性能航空高氮不锈轴承钢的基础研究,2020/01-2023/12,320万元,主持; (2)国家自然科学基金面上项目,基于氮气压力动态调节的电渣重熔制备高氮高速钢梯度材料的基础研究,2018/1-2021/12,60万元,主持; (3)十三五重大研发计划子课题,620℃超超临界火电机组汽轮机用耐热不锈钢转子研制,2016/1-2019/12,90万元,主持; (4)国家自然科学基金青年项目,51304041,气相渗氮和微弧增氮的加压电渣重熔技术制备含氮耐蚀塑料模具钢的基础研究,2014/01-2016/12,25万元,主持; (5)863计划子课题,2015AA034301,典型极端环境下超级不锈钢服役行为及其制备技术,2015/04-2018/03,140万元,主持; (6)863计划子课题,2012AA03A502,开发600MW以上大容量超超临界火电机组汽轮机护环,2012/05-2015/12,265万元,主持; (7)国家自然科学基金重点项目,51434004,高品质特殊钢加压下熔炼和凝固的基础研究,2015/01-2019/12,340万元,骨干(第二,执行负责); (8)联合基金重点项目(军民共用重大研究计划),U1435205,高品质特殊钢加压下熔炼和凝固的基础研究,2015/01-2018/12,160万元,骨干(第二,执行负责); (9)国家自然科学基金联合资助重点项目,50534010,高氮不锈钢中氮的作用机理及对性能的影响,2006/01-2009/12,170万元,骨干(执行负责)。

研究领域

(1)高品质特殊钢冶金理论及新工艺开发; (2)高氮不锈钢制备技术、新品种开发及加压冶金理论; (3)高性能不锈钢冶炼工艺及新品种开发。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Shucai Zhang , Huabing Li*, Zhouhua Jiang, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment, Corrosion Science, 2019,online. [2] Hao Feng, Hua-Bing Li*, Zhou-Hua Jiang, et al. Designing for high corrosion-resistant high nitrogen martensitic stainless steel based on DFT calculation and pressurized metallurgy method. Corrosion Science, 2019, 158 (2019) 108081. [3] Shucai Zhang, Huabing Li*, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu, Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 2019, online. [4] Jialong Tian, Wei Wang*, Huabing Li*, et al. Effect of deformation on precipitation hardening behavior of a maraging steel in the aging process. Materials Characterization 155 (2019) 109827. [5] Shucai Zhang, Huabing Li*, Zhouhua Jiang, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654. Materials Characterization 152(2019) 141-150. [6] Hao Feng, Hua-Bing Li*, Wei-Chao Jiao, et al. Significance of Partial Substitution of C by N on Strengthening and Toughening Mechanisms of High Nitrogen Fe-15Cr-1Mo-C-N Martensitic Stainless Steels. Metallurgical and Materials Transactions A 50 (2019) 2019, 50(11): 4987–4999. [7] Weichao Jiao, Huabing Li*, Hao Feng, Zhouhua Jiang, Jing Dai, Hongchun Zhu, Shucai Zhang, Mansheng Chu, Wei Wu, Effect of High Nitrogen Addition on Microstructure and Mechanical Properties of As-cast M42 High Speed Steel , ISIJ International, 2019, online. [8] Wei-Chao Jiao, Hua-Bing Li*, Jing Dai, et al. Effect of partial replacement of carbon by nitrogen on intergranular corrosion behavior of high nitrogen martensitic stainless steels. Journal of Materials Science & Technology,2019, 35 (2019) 2357–2364. [9] Jia Yu, Fubin Lu, Huabing Li*, et al. Effects of mold current on slag skin and heat flow distribution during electroslag remelting at given power input. JOM, 71 (2019)744-753. [10] Zhouhua Jiang, Guang Xu, Yang Li, Huabing Li*, et al. Effect of Ultra-high Magnesium on SKS51 Liquid Steel Cleanliness and Microstructure. ISIJ International, 59 (2019) 1234-1241. [11] Hao Feng, Zhouhua Jiang, Huabing Li*, et al. Influence of nitrogen on corrosion behaviour of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy. Corrosion Science, 144 (2018) 288-300. [12] Shucai Zhang, Zhouhua Jiang, Huabing Li*, et al. Catastrophic oxidation mechanism of hyper duplex stainless steel S32707 at high temperature in air. Materials Characterization, 2018, 145 (2018) 233–245. [13] Hao Feng , Huabing Li *, Xiaolei Wu, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy. Journal of Materials Science & Technology, 2018, 34: 1781–1790. [14] Shucai Zhang, Zhouhua Jiang, Huabing Li*, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging. Materials Characterization, 2018, 137 244–255. [15] Z. H. Jiang, H. C. Zhu, H. B. Li*, et al. H.C. Zhu, Z.H. Jiang, H.B. Li*. A Novel Method for Improving Cast Structure of M42 High Speed Steel by Pressurized Metallurgy Technology, ISIJ International, 2018, 58 (7): 1267–1274. [16] Z.H. Jiang, H.C. Zhu, H.B. Li*, et al. Effect of solidification pressure on interfacial heat transfer and solidification structure of 19Cr14Mn0.9N high nitrogen steel, ISIJ International, 2018, 58 (1): 107–113. [17] Yang LI, Changyong CHEN, Zhouhua JIANG, Meng SUN, Hao HU and Huabing LI*. Application of Alkali Oxides in LF Refining Slag for Enhancing Inclusion Removal in C96V Saw Wire Steel, ISIJ International, 2018, 58 (7): 1232–1241. [18] Changyong CHEN, Zhouhua JIANG, Yang LI, Meng SUN, Guoqing QIN, Conglin YAO, Qi WANG and Huabing LI*. Effect of Rb2O on Inclusion Removal in C96V Saw Wire Steels Using Low-Basicity LF Refining Slag, ISIJ International, 2018, 58 (2018) 2032-2041. [19] H.C. Zhu, Z.H. Jiang, H.B. Li*. Effect of Solidification Pressure on Thermodynamic and Kinetic Parameters of 19Cr14Mn4Mo0.9N High Nitrogen Steel. Steel Research International, 2018, 89. [20]H. C. Zhu, Z. H. Jiang*, H. B. Li*, et al. Effects of nitrogen segregation and solubility on the formation of nitrogen gas pores in 21.5Cr-1.5Ni duplex stainless steel, Metallurgical and Materials Transactions B, 2017,1~11. [21] H. B. Li*, S. X. Yang, S. C. Zhang*, etal. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654, Materials and Design, 2017, 118:207-217. [22] H. B. Li, C. T. Yang, E. Z. Zhou, C. G. Yang*, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine pseudomonas aeruginosa biofilm, Journal of Materials Science & Technology, 2017, 1-8. [23] S. C. Zhang, Z. H. Jiang, H. B. Li*, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method, Journal of Alloys and Compounds, 2017, 695: 3083~3093. [24] B. B. Zhang, Z. H. Jiang, H. B. Li*, et al. Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature, Materials Characterization, 2017, 129:31~39. [25] H. Feng, Z. H. Jiang, H. B. Li*, et al. Hot deformation behavior and microstructural evolution of high nitrogen martensitic stainless steel 30Cr15Mo1N, Steel Research International, 2017. [26] H. C. Zhu, Z. H. Jiang, H. B. Li*, J. H. Zhu, H. Feng, S. C. Zhang,B. B. Zhang, P. B. Wang, and G. H. Liu. Effect of solidification pressure on compactness degree of 19Cr14Mn0.9N high nitrogen steel using CAFE method, Steel Research International, 2017, 88(7):1~12. [27] Huabing Li, Enze Zhou, Yibin Ren et al. Investigation of microbiologically influenced corrosion of highnitrogen nickel-free stainless steel by Pseudomonas aeruginosa, Corrosion Science, 2016, 111: 811–821. [28] Huabing Li*, Binbin Zhanga, Zhouhua Jiang, et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air, Journal of Alloys and Compounds, 2016, 86: 326-338. [29] Li HB*, Jiang ZH, Feng H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel, Materials and Design, 84 (2015) 291-299.

学术兼职

Metallurgical and Materials Transactions B(Key Reader)、钢铁研究学报编委、《中南大学学报(英文版)》首届青年编委、矿物冶金与材料学报(英文版)第一届青年编委、材料工程和航空材料学报青年编委、特钢冶炼委员会委员、不锈钢与耐热钢学术委员会委员

推荐链接
down
wechat
bug