当前位置: X-MOL首页全球导师 海外导师 › Henkelman, Graeme

研究领域

The primary focus of the Henkelman group is the development of simulation methodology to study kinetic processes at the atomic scale. We are interested in surface growth, diffusion in solids, and reactions at surfaces. For chemical reactions, electronic structure methods are used to model atomic interactions. Although accurate, these calculations are expensive, so we are also interested in systems for which there exist or for which we can develop empirical potentials. This allows for the study of much larger systems and it opens the possibility to develop methods that would be too costly otherwise. Using these computational methods, we strive to understand the dynamics of chemical systems over experimental time scales. An example of what we are trying to understand is catalysis at nanoparticles. Properties of metal particles can change dramatically in the nanoscale. Recent experiments have shown that unreactive metals can become catalytically active as nanoparticles. This provides an opportunity for theorists to explain why metal particles are so active, and ultimately to help design new and better catalysts.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

L. Zhang, R. M. Anderson, R. M. Crooks, and G. Henkelman, Correlating Structure and Function of Metal Nanoparticles for Catalysis, Surf. Sci. (in press, 2015). J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J.-J. Lee, X.-Q. Yang, G. Henkelman, and J. B. Goodenough, Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery, J. Am. Chem. Soc. 137, 2658-2664 (2015). DOI Z. Duan and G. Henkelman, CO oxidation at the Au/TiO2 boundary: The role of the Au/Ti5c site, ACS Catal. 5, 1589-1595 (2015). DOI G. M. Mullen, L. Zhang, E. J. Evans Jr., T. Yan, G. Henkelman, and C. B. Mullins, Control of selectivity in allylic alcohol oxidation on gold surfaces: The role of oxygen adatoms and hydroxyl species, Phys. Chem. Chem. Phys. 17, 4730-4738 (2015). DOI L. Zhang and G. Henkelman, Computational design of alloy-core@shell metal nanoparticle catalysts, ACS Catal. 5, 655-660 (2015). DOI S. T. Chill, J. Stevenson, V. Ruhle, C. Shang, P. Xiao, J. Farrell, D. Wales, and G. Henkelman, Benchmarks for characterization of minima, transition states and pathways in atomic systems, J. Chem. Theory Comput. 10, 5476-5482 (2014). DOI S. García, L. Zhang, G. W. Piburn, G. Henkelman, and S. M. Humphrey, Microwave Synthesis of Classically Immiscible Rhodium-Silver and Rhodium-Gold Alloy Nanoparticles: Highly Active Hydrogenation Catalysts, ACS Nano 8, 11512-11521 (2014). DOI P. Xiao and Q. Wu and G. Henkelman, Basin constrained κ-dimer method for saddle point finding, J. Chem. Phys. 141, 164111 (2014). DOI P. Li, G. Henkelman J. A. Keith, and J. K. Johnson, Elucidation of aqueous solvent mediated hydrogen transfer reactions by ab initio molecular dynamics and nudged elastic band studies of NaBH4 hydrolysis, J. Phys. Chem. C 118, 21385-21399 (2014). DOI Z. Duan and G. Henkelman, CO oxidation on the Pd(111) surface, ACS Catal. 4, 3435-3443 (2014). DOI M. Garvey, J. Kestell, R. Abuflaha, D. Bennett, G. Henkelman, and W. Tysoe, Understanding and controlling the 1,4-phenylene diisocyanide-gold oligomer formation pathways, J. Phys. Chem. C 118, 20899-20907 (2014). DOI O. Sharia, J. Holzgrafe, N. Park, and G. Henkelman, Rare event molecular dynamics simulations of plasma induced surface ablation, J. Chem. Phys. 141, 074706 (2014). DOI M. V. Pachuilo, F. Stefani, L. L. Raja, R. D. Bengtson, G. A. Henkelman, A. C. Tas, W. M. Kriven, and S. K Sinha, development of a gas-fed plasma source for pulsed high-density plasma/material interaction studies, IEEE Trans. Plasma Sci. 42 3245-3252 (2014). DOI S. T. Chill and G. Henkelman, Molecular dynamics saddle search adaptive kinetic Monte Carlo, J. Chem. Phys. 140, 214110 (2014). DOI M.-W. Xu, P. Xiao, S. Stauffer, J. Song, G. Henkelman, and J. B. Goodenough, Theoretical and experimental study of vanadium-based fluorophosphates cathodes for rechargeable batteries, Chem. Mater. 26, 3089-3097 (2014). DOI J. Duncan, Q. Wu, K. Promislow, and G. Henkelman, Biased gradient squared descent saddle point finding method, J. Chem. Phys. 140, 194102 (2014). DOI W. Gao, P. Xiao, G. Henkelman, K. M. Liechti, and R. Huang, Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections, J. Phys. D: Appl. Phys. 47, 255301 (2014). DOI P. Xiao, D. Sheppard, J. Rogal, and G. Henkelman, Solid-state dimer method for calculating solid-solid phase transitions, J. Chem. Phys. 140, 174104 (2014). DOI S. T. Chill, M. Welborn, R. Terrell, L. Zhang, J.-C. Berthet, A. Pedersen, H. Jónsson, and G. Henkelman, EON: Software for long time simulations of atomic scale systems, Model. Simul. Mater. Sci. Eng. 22, 055002 (2014). DOI G. M. Mullen, L. Zhang, E. J. Evans Jr., T. Yan, G. Henkelman, and C. B. Mullins, Oxygen and hydroxyl species induce multiple reaction pathways for the partial oxidation of allyl alcohol over Au(111), J. Am. Chem. Soc. 136, 6489-6498 (2014). DOI

推荐链接
down
wechat
bug