当前位置: X-MOL首页全球导师 国内导师 › 饶枫

个人简介

工作经历 2016-至今 南方科技大学生物系,副教授 2015-2016 北京生命科学研究所,研究员 2011-2015 美国约翰霍普金斯大学医学院,博士后 2006-2007 新加坡南洋理工大学,项目主任 2005-2006 新加坡国立大学,科研助理 学习经历 2007-2011 新加坡南洋理工大学生物学博士 2001-2005 新加坡国立大学生物医学学士

研究领域

一、焦磷酸肌醇(IP7)代谢小分子在功能机制研究 G蛋白偶联受体(GPCR)信号转导通路的新型第二信使三磷酸肌醇(IP3)能被一系列的肌醇激酶进一步磷酸化生成多种多磷酸肌醇(IP4-8),其功能了解不多。其中,能量高,不稳定的焦磷酸肌醇(IP7/8)的作用原理尤为难解。我们之前发现IP7是肿瘤细胞里调控凋亡和转移的命运抉择开关,在早期通过促凋亡来抑制肿瘤发生,后期则通过诱导上皮细胞-间充质转换来促进肿瘤恶化与转移(Rao et al. Mol Cell, 2014;Rao et al. PNAS, 2015)。但是,IP7在疾病微环境中所感应的上游信号不清楚。通过研究焦磷酸肌醇特异的合成和水解酶的催化及调控机制,我们着眼于在细胞和小鼠模型里发掘焦磷酸肌醇介导的生理过程(如代谢稳态和肿瘤转移),并揭示相关的信号转导通路。在此基础上,我们通过化学生物学和生物化学的方法寻找小分子的直接作用位点和作用模式,希望能够归纳出焦磷酸肌醇作用的普遍规律。基于焦磷酸肌醇在癌症等疾病发生过程中的作用,我们的机制和功能研究或可为治疗相关疾病提供新靶点。 二、CRL泛素连接酶的拟素化修饰的代谢调控与疾病 Cullin-RING ligase(CRL)家族泛素连接酶介导了总泛素化的20%,在癌症和糖尿病等多种疾病中失调,是新兴治疗靶点。CRL 还是最近兴起的蛋白降解靶向联合体(PROTAC)小分子药物所倚仗的泛素连接酶。CRL被拟素化修饰激活,受去拟泛素化酶CSN 抑制。我们研究CRL拟素化的代谢分子调控路径,包括多磷酸肌醇小分子和营养 (Rao et al. PNAS, 2014; Scherer,…, Rao*. PNAS, 2016; Lin,…, Rao*. PNAS, 2020)。相关发现或可为研发靶向CRL的新路径和解决PROTAC耐药提供理论基础。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Luo Y, Su Y, Rao F*. Role of NEDD8 and neddylation dynamics in DNA damage response. Genome Instability & Disease 2021 139-149 Lin H#, Yan Y#, Luo Y#, So WY#, Wei X, Zhang X, Yang X, Zhang J, Su Y, Yang X, Zhang B, Zhang KJ, Jiang N, Chow BKC, Han W, Wang F, and Rao F*. IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion. Nat. Commun. 2021 12, 2461. https://doi.org/10.1038/s41467-021-22941-3 Lin H#, Yan Y#, Luo Y#, So WY#, Wei X, Zhang X, Yang X, Zhang J, Su Y, Yang X, Zhang B, Zhang KJ, Jiang N, Chow BKC, Han W, Wang F, and Rao F. IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion against hyperinsulinemia. Nat. Commun. 2021 12, 2461. https://doi.org/10.1038/s41467-021-22941-3 Lin H. #, Zhang XZ. #, Liu L., Fu QY., Zang CL., Ding Y., Xu ZX., He SN., Yang XL., Wei XY., Mao HB., Cui YS, Wei Yi., Zhou CZ., Du LL., Huang N., Zheng N., Wang T., and Rao F.*. Molecular basis of metabolite-dependent Cullin RING ligase deneddylation by the COP9 Siganalosome. Proc Natl Acad Sci USA. 2020, DOI: 10.1073/pnas.1911998117. Rao F.*, Lin H., Su Y.. Cullin RING ligase regulation by the COP9 Signalosome: Structural Mechanisms and New Physiologic Players. Adv. Exp. Med. Biol. 2020, 1217, 47-60. (Invited Chapter of the book “Cullin RING Ligases and Neddylation”) Zhang XZ., Rao F.*. Are inositol polyphosphates the missing link in dynamic Cullin RING ligase regulation by the COP9 Signalosome? Biomolecules. Special Issue on “ZOMES”: 2019, 9, 349. Fu C., Tyagi R., Chin AC., Rojas T., Li RJ., Guha P., Bernstein IA., Rao F., Xu R., Cha JY., Xu J., Snowman AM., Semenza GL., Snyder SH.*. Inositol Polyphosphate Multikinase Inhibits Angiogenesis via Inositol Pentakisphosphate-Induced HIF-1α [J]. Circulation Research. 2018 Feb 2, 122(3):457-472. Scherer PC., Zaccor NW., Neumann NM., Vasavda C., Barrow R., Ewald AJ., Rao F., Sumner CJ., Snyder SH.*. TRPV1 is a physiological regulator of μ-opioid receptors[J]. Proc Natl Acad Sci USA. 2017 Dec 19, 114(51):13561-13566. Scherer PC.#, Ding Y.#, Liu Z., Xu J., Mao H., Barrow JC., Wei N., Zheng N., Snyder SH*, Rao F.*. Inositol hexakisphosphate(IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proc Natl Acad Sci USA. 2016, 113, 3503-8. Rao F.#, Xu J.#, Fu C., Cha JY., Xu R., Gadalla MM., Wu M., Fiedler D., Barrow JC., Snyder SH.*. Inositol pyrophosphates promote cancer growth and metastasis by antagonizing the tumor suppressor LKB1. Proc Natl Acad Sci USA. 2015 112, 1773-8. Rao F.#, Xu J.#, Kahn AB., Cha J., Xu R. Tyagi R., Dang Y., Chakraborty A., Snyder SH.*. Inositol hexakisphosphate kinase-1 mediates assembly/ disassembly of the CRL4-Signalosome complex to regulate DNA repair and cell death. Proc Natl Acad Sci USA. 2014, 111, 16005-16010. Rao F., Cha J., Xu J., Xu R., Vandiver MS., Tokhunt RT., Wu M., Fiedler D., Barrow J., Snyder SH.*. Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell. 2014, 54, 119-32. Tan E.#, Rao F.#, Pasunooti S., Pham TH., Soehano I., Turner MS., Liew CW., Lescar J., Pervushin K., Liang Z-X*. Solution structure of the PAS domain of a thermophilic YybT homolog reveals a potential ligand-binding site. J Biol Chem. 2013, 288:11949-59. Xu R., Sen N., Paul BD., Rao F., Vandiver MS., Snyder SH.*. Inositol phosphate multikinase catalyzes the acetylation of p53 by p300, thereby functioning as a p53 transcriptional co-activator. Science Signaling. 2013, 6, ra22: 1-10. Vandiver MS., Paul BD., Xu R., Karuppagounder S., Rao F., Snowman AM., Ko HS., Li YI., Sen N., Dawson VL., Dawson TM., Snyder SH.*. Sulfhydration mediates neuroprotective actions of Parkin. Nat Commun. 2013, 4:1626. Xu R, Paul BD, Smith DR, Tyagi R, Rao F., Khan AB., Blech DJ., Vandiver MS., Harraz MM., Guha P., Ahmed I., Sen N., Gallagher M., Snyder SH.*. Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proc Natl Acad Sci USA. 2013, 6, 110, 16181-. Cha J., Xu J., Paul BD., Rao F., Ho G., Snyder SH.*. Dexras1 Mediates adipogenesis and diet-induced obesity. Proc Natl Acad Sci USA. 2013, 110, 20575-. Chia WS., Chia, XD., Rao F., Bar-Nun S., Geifman S.*. ATP binding to p97/VCP regulates selective recruitment of adaptors to its proximal N-domain. PLOS ONE. 2012, 7: e50490. Chen M.W., Kotaka M., Vonrhein C., Bricogne G., Rao F., Chuah M.L., Svergun D., Schneider G., Liang Z-X.*. and Lescar J. *. Structural insights into the regulatory mechanism of the response regulator RocR from Pseudomonas aeruginosa in cyclic di-GMP signaling. J Bacteriol. 2012, 194:4837-4846. Rao, F., Wang T., Li M., Li Z., Hong N., Zhao H., Yan Y., Lu W., Chen T., Wang W., Lim M., Yuan Y., Liu L., Zeng L., Wei Q., Guan G., Li C., Hong Y.*. Medaka tertproduces multiple variants with differential expression during differentiation in vitro and in vivo. Biol. Sci. 2011, 7(4):426-439.

推荐链接
down
wechat
bug