当前位置: X-MOL 学术Russ. J. Non-ferrous Metals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of Pobeda Furnace Bubbling Zone Physics Using Cold Modeling Method. Part 2. Hydro-Gas Dynamics of Liquid Blowing by Gas Using Bottom Gas-Protected Lance
Russian Journal of Non-Ferrous Metals ( IF 0.8 ) Pub Date : 2022-04-30 , DOI: 10.3103/s1067821222020031
K. V. Bulatov 1 , V. P. Zhukov 1 , E. V. Bratygin 1 , N. A. Tomilov 1 , V. A. Menshikov 2
Affiliation  

Abstract

Cold flow simulation of Pobeda furnace bubbled bath hydro-gas dynamics was performed using a bottom gas-protected lance. It was shown that gas infusion into liquid at Archimedes criterion Ar = 5–60 is carried out in the pulse-coupled regime. The area of gas and liquid interaction was investigated at Ar = idem for separated and united air egress through ring and round nozzles. At all considered values of Ar, a two-phase zone was formed in liquid that was composed of “leg” with different geometrical shape, cavity, and gas-liquid layer over the bath surface. Characteristic features of blowing zone formation, flame configuration, and its structure in relation to the blow injection configuration and Ar values were found. It was detected that, at intense blowing through the lance center and ring gap, an ejected liquid prevailed in the cavity structure, the content of which increased upon increase in gas consumption in shell, but near the nozzle face, the “leg” is composed of the gas phase. A hypothesis was formulated that the presence of an additional amount of sulfide melt in oxidative streamline provides more complete magnetite destruction in the bath volume and at close proximity of the nozzle provides formation of a protective coating. The sizes of the most indicative geometrical areas of flame were quantified, which gave evidence about periodic and extreme behavior of jet spread in liquid. Empirical equations of the relation between maximum linear and across “leg” sizes at dynamical conditions of blow injection in shell (Arshell) and central tube (Arc) are obtained for two values Arshell ≥ Arcand Arshell ≤ Arc. It was estimated that blow injection in shell increases extension velocity of the “leg” on the nozzle face to 137 mm/s. The dependence of average height (Havg, m) of splash lift over calm bath surface was defined, which at 25 ≥ Arshell ≥ 5 and 60 ≥ Arc ≥ 12 has the form Havg = 0.027(Arshell + Arc)0.27. Using Schlichting’s equation, a value of maximum offset from the nozzle surface where cooperative axial movement in liquid of ring and round flow with isovelocity is preserved is calculated. It is proposed that a protective effect of bottom lance with shell appears in the lance belt area over a distance of 7–10 cm from the nozzle surface. The cavity after separation from the nozzle moves down vertically, but countercurrent liquid flow bounding on the cavity front moves in the opposite direction, flowing around the phase interface with comparable velocity. On the basis of more intense change in the transverse size of the interaction zone in the nozzle area and noticeable sideways liquid movement, it was recommended to take corrective action for decreasing the action of melt erosion in the lance belt of the Pobeda furnace on the entrance region of flow development.



中文翻译:

使用冷建模方法研究 Pobeda 炉鼓泡区物理。第 2 部分。使用底部气体保护喷枪的气体吹送液体的水-气动力学

摘要

使用底部气体保护喷枪对 Pobeda 炉鼓泡浴水气动力学进行冷流模拟。结果表明,在阿基米德标准 Ar = 5-60 下,气体注入液体是在脉冲耦合状态下进行的。在 Ar = 同上,研究了气体和液体相互作用的面积,用于通过环形和圆形喷嘴分离和统一的空气出口。在所有考虑的 Ar 值下,在液体中形成了一个两相区,该两相区由具有不同几何形状的“腿”、腔体和浴表面上的气液层组成。发现了吹气区形成、火焰形态及其结构与吹气喷射形态和 Ar 值相关的特征。检测到,在通过喷枪中心和环缝的强烈吹气时,腔体结构中普遍存在喷射液体,其含量随着壳内气体消耗量的增加而增加,但在喷嘴面附近,“腿”由气相组成。提出了一个假设,即在氧化流线中存在额外量的硫化物熔体会在熔池体积中提供更完全的磁铁矿破坏,并且在喷嘴附近提供保护涂层的形成。对最具指示性的火焰几何区域的大小进行了量化,这为射流在液体中传播的周期性和极端行为提供了证据。壳内喷射动态条件下最大线性和跨“腿”尺寸之间关系的经验方程(Ar 提出了一个假设,即在氧化流线中存在额外量的硫化物熔体会在熔池体积中提供更完全的磁铁矿破坏,并且在喷嘴附近提供保护涂层的形成。对最具指示性的火焰几何区域的大小进行了量化,这为射流在液体中传播的周期性和极端行为提供了证据。壳内喷射动态条件下最大线性和跨“腿”尺寸之间关系的经验方程(Ar 提出了一个假设,即在氧化流线中存在额外量的硫化物熔体会在熔池体积中提供更完全的磁铁矿破坏,并且在喷嘴附近提供保护涂层的形成。对最具指示性的火焰几何区域的大小进行了量化,这为射流在液体中传播的周期性和极端行为提供了证据。壳内喷射动态条件下最大线性和跨“腿”尺寸之间关系的经验方程(Ar 这提供了关于射流在液体中传播的周期性和极端行为的证据。壳内喷射动态条件下最大线性和跨“腿”尺寸之间关系的经验方程(Ar 这提供了关于射流在液体中传播的周期性和极端行为的证据。壳内喷射动态条件下最大线性和跨“腿”尺寸之间关系的经验方程(Arshell ) 和中心管 (Ar c ) 对于两个值 Ar shell ≥ Ar c和 Ar shell ≤ Ar c。据估计,壳内吹注将喷嘴面上“腿”的延伸速度提高到 137 mm/s。定义了飞溅升力平均高度 ( H avg , m) 在平静的浴表面上的依赖性,在 25 ≥ Ar shell ≥ 5 和 60 ≥ Ar c ≥ 12 时,H avg = 0.027(Ar shell + Ar c ) 0.27. 使用 Schlichting 方程,计算了从喷嘴表面的最大偏移值,其中保留了具有等速环流和圆流的液体中的协同轴向运动。建议在距离喷嘴表面7-10 cm的喷枪带区域出现底部喷枪带壳的保护作用。与喷嘴分离后的空腔垂直向下移动,但在空腔前部边界的逆流液流沿相反方向移动,以相当的速度在相界面周围流动。在喷嘴区域相互作用区横向尺寸变化更加剧烈的基础上,以及明显的侧向液体运动,

更新日期:2022-05-02
down
wechat
bug