当前位置: X-MOL 学术Korea Aust. Rheol. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation-based performance improvement of the separation of circulating tumor cells from bloodstream in a microfluidic platform by dielectrophoresis
Korea-Australia Rheology Journal ( IF 1.3 ) Pub Date : 2022-08-12 , DOI: 10.1007/s13367-022-00039-6
Ngoc-Viet Nguyen , Hoang Van Manh , Nguyen Van Hieu

Circulating tumor cells (CTCs) detection has become one of the promising solutions for the early diagnosis of cancers. Thus, the separation of CTCs is of great importance in biomedical applications. In addition, microfluidic technology has been an attractive approach to the manipulation of biological cells. This study presents the parametric investigations relevant to the volumetric throughput of a microfluidic platform with the dielectrophoresis (DEP)-based cell manipulation technique for the continuous CTCs separation. A low potential voltage at an appropriate frequency was applied to slanted planar electrodes to separate CTCs from normal cells in blood samples due to mainly the cell size difference. The performance of the separation process was analyzed by evaluating the cell trajectories, purity, and recovery rates. Several inlet flow rates of buffer and cell sample fluid streams were examined. Various channel configurations with different outlet and height dimensions were also investigated to enhance the isolation of CTCs. During the simulation, the size and shape of cells were assumed as fixed-sized, solid spheres. The results showed that CTCs could be separated from blood cells, including white blood cells (WBCs), red blood cells (RBCs), and platelets (PLTs) with recovery and purity factors up to 100% at the cell sample throughput of 10 µL/min by utilizing a suitable microchannel design. The current study significantly contributes valuable insights into the design of the microchip devices to effectively and selectively isolate different cancerous cells in biofluids.

Graphical abstract



中文翻译:

基于数值模拟的介电泳微流控平台中循环肿瘤细胞与血流分离的性能改进

循环肿瘤细胞(CTC)检测已成为癌症早期诊断的有希望的解决方案之一。因此,CTC 的分离在生物医学应用中非常重要。此外,微流体技术已成为操纵生物细胞的一种有吸引力的方法。本研究介绍了与微流控平台的体积通量相关的参数研究,该平台采用基于介电泳 (DEP) 的细胞操作技术进行连续 CTC 分离。将适当频率的低电位电压施加到倾斜的平面电极上,以将 CTC 与血液样本中的正常细胞分离,这主要是由于细胞大小的差异。通过评估细胞轨迹、纯度和回收率来分析分离过程的性能。检查了缓冲液和细胞样品流体流的几种入口流速。还研究了具有不同出口和高度尺寸的各种通道配置以增强 CTC 的隔离。在模拟过程中,细胞的大小和形状被假定为固定大小的实心球体。结果表明,在细胞样品通量为 10 µL/分钟通过使用合适的微通道设计。目前的研究为微芯片设备的设计提供了有价值的见解,以有效和选择性地分离生物流体中的不同癌细胞。还研究了具有不同出口和高度尺寸的各种通道配置以增强 CTC 的隔离。在模拟过程中,细胞的大小和形状被假定为固定大小的实心球体。结果表明,在细胞样品通量为 10 µL/分钟通过使用合适的微通道设计。目前的研究为微芯片设备的设计提供了有价值的见解,以有效和选择性地分离生物流体中的不同癌细胞。还研究了具有不同出口和高度尺寸的各种通道配置以增强 CTC 的隔离。在模拟过程中,细胞的大小和形状被假定为固定大小的实心球体。结果表明,在细胞样品通量为 10 µL/分钟通过使用合适的微通道设计。目前的研究为微芯片设备的设计提供了有价值的见解,以有效和选择性地分离生物流体中的不同癌细胞。固体球体。结果表明,在细胞样品通量为 10 µL/分钟通过使用合适的微通道设计。目前的研究为微芯片设备的设计提供了有价值的见解,以有效和选择性地分离生物流体中的不同癌细胞。固体球体。结果表明,在细胞样品通量为 10 µL/分钟通过使用合适的微通道设计。目前的研究为微芯片设备的设计提供了有价值的见解,以有效和选择性地分离生物流体中的不同癌细胞。

图形概要

更新日期:2022-08-12
down
wechat
bug