当前位置: X-MOL 学术Powder Metall. Met. Ceram. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Electrochemical Synthesis Conditions on the Composition, Structure, and Morphology of Tungsten Carbide Powders
Powder Metallurgy and Metal Ceramics ( IF 1 ) Pub Date : 2023-12-07 , DOI: 10.1007/s11106-023-00378-1
I. A. Novoselova , S. V. Kuleshov , A. O. Omelchuk , V. N. Bykov , O. M. Fesenko

High-temperature electrochemical synthesis (HTES) in molten salts is highly promising among the up-to-date methods for the production of carbide powders. Ultrafine composite powders of tungsten carbides (WC|C, WC|C|Pt, W2C|WC, and W2C|W) were synthesized using the HTES method in electrolytic baths with different chemical compositions under various synthesis conditions (cathode current density, CO2 pressure in the electrolyzer, temperature, and cathode material). Composite powders (up to 3 wt.% free carbon) with a WC particle size of 20–30 nm were prepared using Na, K|Cl (1 : 1)–Na2W2O7 (6.4 wt.%)–CO2 (1.25 MPa) and Na, K|Cl (1 : 1)–Na2WO4 (12.0 wt.%)–NaPO3 (0.7 wt. %)–CO2 (1.25 MPa) electrolytic baths at a temperature of 750°C. When the CO2 pressure was reduced to 0.75 MPa, composite W2C|WC powders formed at the cathode. The ratio of carbide phases in the composites depended on the initial concentration of tungsten salts in the electrolyte and on the CO2 gas pressure in the electrolyzer. The addition of Li2CO3 (4.5 wt.%) to the electrolytic salt mixture decreased the tungsten carbide particles to 10 nm, changed their morphology, and increased the free carbon content in the composite up to 5 wt.%. The specific surface area of the powder increased by a factor of 4 to 7 (from 20–35 to 140 m2/g). The resulting products were modified with fine platinum particles through the use of platinum cathodes. The HTES method demonstrated its potential for producing tungsten carbide powders with the properties allowing their use as electrocatalysts in the hydrogen evolution reaction. For the WC|C composite powders synthesized in the Na, K|Cl–Na2W2O7–Li2CO3–CO2 system, the hydrogen evolution potential was –0.02 V relative to the normal hydrogen electrode, the overpotential η at a current density of 10 mA/cm2 was –110 mV, the exchange current was 7.0 ⋅ 10–4 A/cm2, and the Tafel slope was –85 mV/dec.



中文翻译:

电化学合成条件对碳化钨粉末成分、结构和形貌的影响

熔盐中的高温电化学合成(HTES)在生产碳化物粉末的最新方法中是非常有前途的。采用HTES方法,在不同化学成分的电解槽中,在不同的合成条件(阴极电流)下合成了超细碳化钨复合粉末(WC|C、WC|C|Pt、W 2 C |WC和W 2 C|W)。密度、电解槽中的CO 2压力、温度和阴极材料)。使用 Na, K|Cl (1 : 1)–Na 2 W 2 O 7 (6.4 wt.%)–CO制备 WC 粒径为 20–30 nm 的复合粉末(高达 3 wt.% 游离碳)2 (1.25 MPa) 和 Na, K|Cl (1 : 1)–Na 2 WO 4 (12.0 wt.%)–NaPO 3 (0.7 wt.%)–CO 2 (1.25 MPa) 电解槽,温度为 750 °C。当CO 2压力降低至0.75 MPa时,在阴极形成复合W 2 C|WC粉末。复合材料中碳化物相的比例取决于电解质中钨盐的初始浓度和电解槽中的CO 2气压。向电解盐混合物中添加Li 2 CO 3 (4.5 wt.%)可将碳化钨颗粒减小至10 nm,改变其形态,并将复合材料中的游离碳含量增加至5 wt.%。粉末的比表面积增加了 4 至 7 倍(从 20-35 增加到 140 m 2 /g)。通过使用铂阴极,用细铂颗粒对所得产品进行了改性。HTES 方法展示了其生产碳化钨粉末的潜力,其特性使其可以在析氢反应中用作电催化剂。在Na,K|Cl–Na 2 W 2 O 7 –Li 2 CO 3 –CO 2体系中合成的WC|C复合粉末,相对于普通氢电极的析氢电位为–0.02 V,过电位η电流密度为 10 mA/cm 2时,电流密度为 –110 mV,交换电流为 7.0 ⋅ 10 –4 A/cm 2,塔菲尔斜率为 –85 mV/dec。

更新日期:2023-12-08
down
wechat
bug