当前位置: X-MOL 学术Indian J. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-principles analysis of how Cobalt doping affects the structural, electronic, and optical properties of α-MoO3
Indian Journal of Physics ( IF 2 ) Pub Date : 2023-12-22 , DOI: 10.1007/s12648-023-03043-w
Md. Ferdous Rahman , Zinat Rahman Melody , Md. Hasan Ali , Avijit Ghosh , Pobitra Barman , Md. Rasidul Islam , M. Khalid Hossain

Abstract

Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO3) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a material is possible. At first, doping can curtail the width of the energy band of semiconductor materials, thereby largely boosting the photo-sensitivity of the material and intensifying the light consumption that is more suitable for anti-laser devices and light source substances. The second is that doping can widen the material's band gap, which can significantly reduce the purities of the substance, improve absorbance, and make it suitable for strong interference semiconductor films and aperture materials. Third, changing the material's charge carrier density and effective mass can significantly improve conductivity. This is mostly relevant for conductive devices and photosensitive materials. Finally, changing the material's valance electron location influences the magnetic moment created by the spin of elementary particles in the entire system, allowing the magnetic characteristics of the substance to be regulated, which is especially useful for diluted magnetic semiconductor (DMS) materials. The investigation report of the structural, electrical, and optical characteristics of Cobalt (Co)-doped orthorhombic-phase MoO3 utilizing plane-wave pseudo-potential technique based on first-principles computation is presented in this paper. The computation has been executed using density a functional theory (DFT)-based CASTEP computer program with the generalized gradient approximation (GGA) together with the Perdue-Burke-Ernzerhof (PBE) exchange–correlation function. Acquired structural parameters present good consistency with the former reported experimental data. The resultant electronic band structure reveals that pure MoO3 shows an indirect energy band gap of 1.873 eV/2.312 eV whereas Co doping causes band narrowing of about 0.94 eV/1.36 eV with PBE/HSE techniques. The total and partial density of states (PDOS) have been studied comparatively, for pure and Co-doped MoO3, respectively. The absorption coefficient, loss function, reflectivity, refractive index, extinction coefficient, dielectric function, along with optical conductivity have also been determined to analyze the optical properties of Co-doped MoO3. Co-doped MoO3 offers higher conductivity while decreasing resistivity, compared to the undoped case. The present study ensures that Co-doped α- MoO3 can be competently employed as a functional material in gas sensing and optoelectronic devices.



中文翻译:

第一性原理分析钴掺杂如何影响 α-MoO3 的结构、电子和光学性质

摘要

内置的高能带隙和电阻率会对直接用于气体传感和光电器件的本征三氧化钼 (MoO 3 ) 造成损害。掺杂过渡金属离子可能是解决这些问题的乐观方案。通过掺杂,可以对材料的四个侧面进行改性。首先,掺杂可以缩小半导体材料的能带宽度,从而大大提高材料的光敏性,加大光消耗,更适合抗激光器件和光源物质。二是掺杂可以加宽材料的禁带宽度,可以显着降低物质的纯度,提高吸光度,使其适用于强干涉半导体薄膜和孔径材料。第三,改变材料的载流子密度和有效质量可以显着提高电导率。这主要与导电器件和感光材料相关。最后,改变材料的价电子位置会影响整个系统中基本粒子自旋产生的磁矩,从而可以调节物质的磁性特性,这对于稀磁半导体(DMS)材料特别有用。本文提出了利用基于第一性原理计算的平面波赝势技术对钴(Co)掺杂正交相MoO 3的结构、电学和光学特性的研究报告。计算是使用基于密度泛函理论 (DFT) 的 CASTEP 计算机程序、广义梯度近似 (GGA) 以及 Perdue-Burke-Ernzerhof (PBE) 交换相关函数来执行的。获得的结构参数与之前报道的实验数据具有良好的一致性。所得的电子能带结构表明,纯MoO 3显示出1.873 eV/2.312 eV的间接能带隙,而Co掺杂导致利用PBE/HSE技术的能带变窄约0.94 eV/1.36 eV。分别对纯MoO 3和Co掺杂MoO 3 的总态密度和部分态密度(PDOS)进行了比较研究。还测定了吸收系数、损耗函数、反射率、折射率、消光系数、介电函数以及光导率,以分析Co掺杂MoO 3的光学性质。与未掺杂的情况相比,共掺杂的MoO 3提供了更高的电导率,同时降低了电阻率。本研究确保Co掺杂α-MoO 3可以胜任用作气体传感和光电器件中的功能材料。

更新日期:2023-12-23
down
wechat
bug