当前位置: X-MOL 学术Indian J. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of the magnetic field on solar cell parameters: A study using the conventional classical approach
Indian Journal of Physics ( IF 2 ) Pub Date : 2023-12-28 , DOI: 10.1007/s12648-023-03045-8
M. Khalis , R. Masrour

In this work, we have developed a theoretical study based on the classical traditional approach. In fact, the application of the fundamental dynamics relationship in the steady-state regime, taking into account both friction and Lorentz forces, allowed us to determine the velocity components of charge carriers, namely, electrons and holes. By applying Ohm's law, we determined the matrix of electrical resistivity. Knowledge of the resistivity \({{\varvec{\rho}}}_{{\varvec{x}}{\varvec{x}}}\) in the direction of the current and the dimensions of the solar cell allowed us to determine the expression for longitudinal resistance RL as a function of the magnetic field B. Similarly, from the formula for resistivity \({{\varvec{\rho}}}_{{\varvec{y}}{\varvec{x}}}\), we determined the expression for transverse resistance RT as a function of B. A qualitative comparison between RT and RL shows that RT is negligible compared to RL. Consequently, we turned our attention to the impact of the magnetic field on RL, and our theoretical study revealed that it increases with the increase in B. Once this theoretical study has been proposed, it must undergo testing to ensure its validity. Therefore, it is subjected to two tests: one under illumination, for which we referred to the work of Dioari Ulrich Combari et al. (Adv Condens Matter Phys 18:1, 2018). To extract the parameters \({I}_{SC}\), \({I}_{0}\), \({R}_{S}\), \({R}_{Sh}\), n, and \({V}_{OC}\) of the cell, we employed our method of least squares (LMS). The other test is conducted in the dark and is carried out by El-Aasser et al. (Intern J Adv Appl 3:196, 2014) in the presence of a magnetic field B under both direct and indirect biasing conditions. Both tests demonstrate that our theoretical study is in perfect agreement with practical results. In fact, an increase in the intensity of the magnetic field beyond 1 millitesla (mT) automatically results in an increase in the series resistance RS, denoted as RL in our study. Ultimately, an increase in RS leads to a direct decrease in current, maximum power, and efficiency.



中文翻译:

磁场对太阳能电池参数的影响:使用传统经典方法的研究

在这项工作中,我们基于经典传统方法开展了理论研究。事实上,在稳态状态下应用基本动力学关系,同时考虑摩擦力和洛伦兹力,使我们能够确定电荷载流子(即电子和空穴)的速度分量。通过应用欧姆定律,我们确定了电阻率矩阵。了解电流方向的电阻率\({{\varvec{\rho}}}_{{\varvec{x}}{\varvec{x}}}\)和太阳能电池的尺寸使我们能够确定纵向电阻R L与磁场B的函数关系的表达式。类似地,根据电阻率公式\({{\varvec{\rho}}}_{{\varvec{y}}{\varvec{x}}}\) ,我们确定横向电阻R T的表达式为B的函数。RTRL之间的定性比较表明,RL相比,RT 可以忽略不因此,我们将注意力转向磁场对R L的影响,我们的理论研究表明,它随着B的增加而增加。这项理论研究一旦提出,就必须经过检验以确保其有效性。因此,它要经过两项测试:一项是在照明下进行的,为此我们参考了 Dioari Ulrich Combari 等人的工作。(Adv Condens Matter Phys 18:1,2018)。提取参数\({I}_{SC}\)\({I}_{0}\)\({R}_{S}\)\({R}_{Sh}\ )、 n 和\({V}_{OC}\),我们采用最小二乘法 ( LMS)。另一项测试是在黑暗中进行的,由 El-Aasser 等人进行。(Intern J Adv Appl 3:196, 2014)在直接和间接偏置条件下存在磁场B的情况下。两项测试都表明我们的理论研究与实际结果完全一致。事实上,磁场强度增加超过 1 毫特斯拉 ( mT ) 会自动导致串联电阻R S增加,在我们的研究中表示为R L最终, R S的增加会导致电流、最大功率和效率的直接下降。

更新日期:2023-12-28
down
wechat
bug