当前位置: X-MOL 学术J. Homotopy Relat. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On Vietoris–Rips complexes of finite metric spaces with scale 2
Journal of Homotopy and Related Structures ( IF 0.5 ) Pub Date : 2024-02-03 , DOI: 10.1007/s40062-024-00340-x
Ziqin Feng , Naga Chandra Padmini Nukala

We examine the homotopy types of Vietoris–Rips complexes on certain finite metric spaces at scale 2. We consider the collections of subsets of \([m]=\{1, 2, \ldots , m\}\) equipped with symmetric difference metric d, specifically, \({\mathcal {F}}^m_n\), \({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+1}\), \({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+2}\), and \({\mathcal {F}}_{\preceq A}^m\). Here \({\mathcal {F}}^m_n\) is the collection of size n subsets of [m] and \({\mathcal {F}}_{\preceq A}^m\) is the collection of subsets \(\preceq A\) where \(\preceq \) is a total order on the collections of subsets of [m] and \(A\subseteq [m]\) (see the definition of \(\preceq \) in Sect. 1). We prove that the Vietoris–Rips complexes \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}^m_n, 2)\) and \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+1}, 2)\) are either contractible or homotopy equivalent to a wedge sum of \(S^2\)’s; also, the complexes \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+2}, 2)\) and \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_{\preceq A}^m, 2)\) are either contractible or homotopy equivalent to a wedge sum of \(S^3\)’s. We provide inductive formulae for these homotopy types extending the result of Barmak about the independence complexes of Kneser graphs KG\(_{2, k}\) and the result of Adamaszek and Adams about Vietoris–Rips complexes of hypercube graphs with scale 2.



中文翻译:

尺度为 2 的有限度量空间的 Vietoris-Rips 复形

我们在尺度 2 的某些有限度量空间上检查 Vietoris-Rips 复形的同伦类型。我们考虑配备对称差的\([m]=\{1, 2, \ldots , m\}\)子集的集合度量d,具体来说,\({\mathcal {F}}^m_n\)\({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+1}\)\({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+2}\)\({\mathcal {F}}_{\preceq A}^m\ )。这里\({\mathcal {F}}^m_n\)是[ m ] 大小为n个子集的集合,而\({\mathcal {F}}_{\preceq A}^m\)是子集的集合\(\preceq A\)其中\(\preceq \)是 [ m ] 和\(A\subseteq [m]\)的子集集合上的全序(参见\(\preceq \)的定义第 1 节)。我们证明 Vietoris-Rips 复形\({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}^m_n, 2)\)\({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+1}, 2)\) 是可收缩的或同伦等价于\(S^2\)的楔形和;另外,复数\({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+2 }, 2)\)\({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_{\preceq A}^m, 2)\)是可收缩或同伦等价于\(S^3\)的楔和。我们提供了这些同伦类型的归纳公式,扩展了 Barmak 关于 Kneser 图 KG \(_{2, k}\)的独立复形的结果以及 Adamaszek 和 Adams 关于尺度为 2 的超立方图的 Vietoris-Rips 复形的结果。

更新日期:2024-02-04
down
wechat
bug