当前位置: X-MOL 学术J. Bionic Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modular Soft Robotic Crawlers Based on Fluidic Prestressed Composite Actuators
Journal of Bionic Engineering ( IF 4 ) Pub Date : 2024-02-28 , DOI: 10.1007/s42235-024-00487-6
Zefeng Xu , Linkai Hu , Longya Xiao , Hongjie Jiang , Yitong Zhou

Soft robotic crawlers have limited payload capacity and crawling speed. This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite (FPC) actuators. The FPC actuator is precurved and a pneumatic source is used to flatten it, requiring no energy cost to maintain the equilibrium curved shape. Pressurizing and depressurizing the actuators generate alternating stretching and bending motions of the actuators, achieving the crawling motion of the robotic crawler. Multi-modal locomotion (crawling, turning, and pipe climbing) is achieved by modular reconfiguration and gait design. An analytical kinematic model is proposed to characterize the quasi-static curvature and step size of a single-module crawler. Multiple configurations of robotic crawlers are fabricated to demonstrate the crawling ability of the proposed design. A set of systematic experiments are set up and conducted to understand how crawler responses vary as a function of FPC prestrains, input pressures, and actuation frequencies. As per the experiments, the maximum carrying load ratio (carrying load divided by robot weight) is found to be 22.32, and the highest crawling velocity is 3.02 body length (BL) per second (392 mm/s). Multi-modal capabilities are demonstrated by reconfiguring three soft crawlers, including a matrix crawler robot crawling in amphibious environments, and an inching crawler turning at an angular velocity of 2\(^\circ \)/s, as well as earthworm-like crawling robots climbing a 20\(^\circ \) inclination slope and pipe.



中文翻译:

基于流体预应力复合执行器的模块化软机器人爬行器

软体机器人爬行器的有效负载能力和爬行速度有限。本研究提出了一种基于流体预应力复合材料(FPC)执行器的高性能尺蠖式模块化机器人履带车。FPC 致动器经过预弯曲,并使用气动源将其压平,无需能源成本即可保持平衡弯曲形状。对执行器进行加压和减压,使执行器产生交替的拉伸和弯曲运动,从而实现机器人爬行器的爬行运动。通过模块化重构和步态设计实现多模式运动(爬行、转弯和管道攀爬)。提出了一种解析运动学模型来表征单模块爬行器的准静态曲率和步长。制造了多种配置的机器人爬行器来展示所提出设计的爬行能力。建立并进行了一组系统实验,以了解爬行器响应如何随 FPC 预应变、输入压力和驱动频率变化。根据实验,最大承载负载比(承载负载除以机器人重量)为22.32,最高爬行速度为每秒3.02个身体长度(BL)(392毫米/秒)。通过重新配置三个软爬行器来展示多模态能力,包括在两栖环境中爬行的矩阵爬行机器人,以及角速度为2 \(^\circ\) /s转动的点动爬行器,以及类似蚯蚓爬行的爬行器。机器人攀爬 20 \(^\circ \) 倾斜度的斜坡和管道。

更新日期:2024-02-28
down
wechat
bug