当前位置: X-MOL 学术Comp. Part. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational 3D-modeling and simulations of generalized heat transport enhancement in cross-fluids with multi-nanoscale particles using Galerkin finite element method
Computational Particle Mechanics ( IF 3.3 ) Pub Date : 2024-03-02 , DOI: 10.1007/s40571-024-00727-w
Abdulaziz Alsenafi , M. Nawaz

Abstract

Using ionized fluids in a magnetic field has numerous applications in engineering and industry. Therefore, heat transport in ionized fluids with thermal memory effects should be predicted using numerical simulations. To achieve this objective, the generalized heat transport in ionized fluid (following a cross-rheological constitutive relation) is modeled, and the governing system is solved numerically using the Galerkin finite element method (GFEM). After the successful implementation of GFEM, the solutions are made grid-independent and convergent. Furthermore, the results are validated with existing literature. Our numerical results show that the memory effects are favorable factors in enhancing heat transport. The Joule heating and heat generation are the characteristics that adversely affect thermal performance. Therefore, heat-absorbing and non-Ohmic dissipative fluids are recommended for optimized heat transport. Similarly, using ionized fluid in the presence of a magnetic field is recommended, as Hall and ion slip currents significantly reduce the Ohmic dissipation in the fluid during heat transport. Hall and ion slip currents induced by the movement of ionized fluid subjected to a variable magnetic field tend to cancel out the retarding effects of Lorentz force, due to which the friction force between fluid particles and the solid surface is reduced. Thus, it is concluded that if stress at the surface caused by fluid movement is required to minimize, then ionized fluid is recommended as a working fluid for transporting heat. Thermal memory effects in mono-nanofluid are stronger than those in fluids with di- and tri-nanoparticles. Moreover, the heat transfer of fluid dispersed with tri-nanoparticles is the best working fluid for thermal efficiency in transporting heat.



中文翻译:

使用 Galerkin 有限元法对多纳米级颗粒交叉流体中的广义传热增强进行计算 3D 建模和模拟

摘要

在磁场中使用电离流体在工程和工业中有许多应用。因此,应使用数值模拟来预测具有热记忆效应的电离流体中的热传输。为了实现这一目标,对电离流体中的广义热传输(遵循交叉流变本构关系)进行了建模,并使用伽辽金有限元法 (GFEM) 对控制系统进行了数值求解。GFEM成功实施后,解决方案变得与网格无关且收敛。此外,结果还通过现有文献进行了验证。我们的数值结果表明,记忆效应是增强热传输的有利因素。焦耳热和发热是对热性能产生不利影响的特性。因此,建议使用吸热和非欧姆耗散流体来优化热传输。同样,建议在存在磁场的情况下使用电离流体,因为霍尔和离子滑移电流会显着降低热传输过程中流体中的欧姆耗散。受到可变磁场影响的电离流体运动引起的霍尔电流和离子滑移电流往往会抵消洛伦兹力的减速效应,从而减小流体颗粒和固体表面之间的摩擦力。因此,得出的结论是,如果需要最小化由流体运动引起的表面应力,则推荐电离流体作为传输热量的工作流体。单纳米流体中的热记忆效应比具有二纳米粒子和三纳米粒子的流体中的热记忆效应更强。而且,三纳米颗粒分散流体的传热是传热热效率最好的工质。

更新日期:2024-03-02
down
wechat
bug